Ein Schwarzes Loch in der Photonensphäre umkreisen

Bildcredit und Bildrechte: Robert Nemiroff (MTU)

Was würden wir sehen, wenn wir zu einem Schwarzen Loch kommen? Ein besonders interessanter Ort in der Nähe eines Schwarzen Loches ist seine Photonensphäre. Dort können Photonen es umkreisen. Dieser Bereich ist 50 Prozent weiter vom Innersten entfernt als der Ereignishorizont.

Wenn ihr von der Photonensphäre eines Schwarzen Loches nach außen blickt, wäre der halbe Himmel ganz schwarz. Die andere Hälfte wäre ungewöhnlich hell. Was sich hinter eurem Kopf befindet, wäre in der Mitte zu sehen.

Dieses computeranimierte Video zeigt diese Aussicht von der Photonensphäre aus. Die untere Region erscheint schwarz, weil alle Lichtstrahlen in dieser dunklen Region vom Schwarzen Loch ausgehen müssten. Das Schwarze Loch strahlt aber natürlich kein Licht ab. Die obere Hälfte des Himmels leuchtet dagegen ungewöhnlich hell und blau verschoben.

Zur Hell-dunkel-Teilung in der Mitte hin tauchen immer mehr vollständige Himmelsbilder auf. Diese Hell-Dunkel-Teilung ist die Photonensphäre. Dort befinden wir uns. Da hier Photonen kreisen können, kreist auch Licht von hinter dem Kopf um das Schwarze Loch und gelangt so ans Auge. Kein Ort am Himmel ist hier verborgen. Sterne, die hinter dem Schwarzen Loch vorbeiwandern, schwirren scheinbar schnell um einen Einsteinring herum. Der Einsteinring erscheint oben als waagrechte Linie. Er ist etwa ein Viertel der Bildhöhe vom oberen Rand des Videos entfernt.

Dieser Film ist Teil einer Videoserie, die den Raum in der Nähe des Ereignishorizonts eines Schwarzen Loches visuell erforscht.

(Hinweis: Der Urheber des Videos, Robert Nemiroff, ist einer der APOD-Herausgeber.)

Zur Originalseite

Um ein Schwarzes Loch kreisen

Bildcredit und Bildrechte: Robert Nemiroff (MTU)

Wie sieht es aus, wenn man um ein Schwarzes Loch kreist? Die starke Gravitation des Schwarzen Loches lenkt die Bahnen von Licht stark ab. Daher wäre die Umgebung sehr merkwürdig.

Erstens könnte man den ganzen Himmel sehen, weil sogar das Licht der Sterne hinter dem Schwarzen Loch zum Betrachter gelenkt würde. Außerdem wäre der Himmel in der Nähe des Schwarzen Lochs stark verzerrt. Dabei würden zum Schwarzen Loch hin immer mehr Bilder des gesamten Himmels sichtbar. Das visuell Auffälligste wäre aber, dass das äußerste Himmelsbild vollständig in einem leicht erkennbaren Kreis enthalten wäre, einem sogenannten Einsteinring.

Das oben gezeigte, wissenschaftlich korrekte Video wurde mit Computern erstellt. Es zeigt, was man sieht, wenn man ein Schwarzes Loch umkreist. Sterne, die fast genau hinter dem Schwarzen Loch vorbeiziehen, wandern sehr schnell um den Einsteinring herum. Sternbilder in der Nähe des Einsteinrings bewegen sich scheinbar schneller als Licht, doch kein Stern bewegt sich tatsächlich so schnell.

Dieses Video ist Teil einer Serie, die den Weltraum in der Nähe des Ereignishorizonts eines Schwarzen Loches visuell erforscht.

Hinweis: Der Urheber des Videos, Robert Nemiroff, ist einer der APOD-Herausgeber.

Zur Originalseite

Blick durch Abell 68

Dieses Hubble-Bild zeigt den Galaxienhaufen Abell 68. Es veranschaulicht die Funktion einer natürlichen Gravitationslinse.

Credit: NASA, ESA, Hubble-Vermächtnis/ESA-Hubble-ArbeitsgemeinschaftDanksagung: Nick Rose

Möchtet ihr einen Galaxienhaufen als Teleskop benützen? Es ist einfacher, als ihr denkt. Ferne Galaxienhaufen sind natürliche starke Gravitationslinsen. Die Gravitationsmasse des Haufens besteht großteils aus Dunkler Materie. Im Einklang mit Einsteins Allgemeiner Relativitätstheorie krümmt sie Licht, das von dahinter kommt. So entstehen vergrößerte und verzerrte Bilder von Galaxien im Hintergrund, die noch weiter entfernt sind.

Dieses scharfe Infrarotbild von Hubble zeigt die Funktion des Galaxienhaufens Abell 68 als Gravitationsteleskop. Es wurde von dem Amateurastronomen Nick Rose beim Wettbewerb „ESA-Hubbles verborgene Schätze“ untersucht.

Wenn ihr den Mauspfeil über das Bild schiebt, seht ihr Markierungen im Bild. Die Markierungen 1 und 2 zeigen zwei Linsenbilder derselben Hintergrundgalaxie. Das verzerrte Galaxienbild mit der Markierung 2 ähnelt einem klassischen Space Invader!

Markierung 3 zeigt eine unverzerrte Haufengalaxie, deren Gas abgestreift wird, während sie durch das dichtere intergalaktische Medium pflügt. Markierung 4 zeigt viele Hintergrundgalaxien. Sie sind als längliche Streifen und Bögen abgebildet.

Der Galaxienhaufen Abell 68 ist etwa 2,1 Milliarden Lichtjahre entfernt und befindet sich im Sternbild Füchslein (Vulpecula). Die Zentralregion des Haufens auf der Hubble-Ansicht ist mehr als 1,2 Millionen Lichtjahre breit.

Zur Originalseite

Die Einsteinkreuz-Gravitationslinse

Mitten im Bild ist eine sehr blasse Galaxie mit Spiralarmen. In der Mitte leuchten sehr helle Flecken in Form eines Kleeblattes, sie bilden ein Einsteinkreuz und stammen von einem dahinter liegenden Quasar.

Bildcredit und Bildrechte: J. Rhoads (Arizona State U.) et al., WIYN, AURA, NOAO, NSF

Die meisten Galaxien haben einen einzelnen Kern. Hat diese Galaxie vier? Die seltsame Antwort führt zu dem Schluss, dass der Kern der umgebenden Galaxie auf diesem Bild gar nicht zu sehen ist. Das Kleeblatt in der Mitte ist vielmehr Licht, das von einem dahinter liegenden Quasar abgestrahlt wird.

Das Gravitationsfeld der sichtbaren Vordergrundgalaxie bricht das Licht des fernen Quasars in vier Einzelbilder. Der Quasar muss genau hinter der Mitte einer massereichen Galaxie liegen, damit eine Fata Morgana wie diese entsteht. Der Effekt wird als Gravitationslinseneffekt bezeichnet. Dieser spezielle Fall wird Einsteinkreuz genannt.

Noch seltsamer ist jedoch, dass die relative Helligkeit der Bilder im Einsteinkreuz variiert. Das wird durch einen gelegentlichen zusätzlichen Mikrogravitationslinseneffekt einzelner Sterne in der Vordergrundgalaxie verursacht.

Zur Originalseite

Ein Hufeisen-Einstein-Ring von Hubble

Um eine elliptische Galaxie verlaufen blaue Bögen. Im Hintergrund sind weitere kleine Galaxien verteilt.

Bildcredit: ESA/Hubble und NASA

Was ist riesig und blau und kann sich um eine ganze Galaxie wickeln? Das Trugbild einer Gravitationslinse. Das Bild zeigt, wie die Gravitation einer rot leuchtenden Galaxie (LRG) das Licht einer viel weiter entfernten blauen Galaxie durch ihre Gravitation verzerrt.

Meistens entstehen bei so einer Lichtbrechung zwei voneinander getrennte Bilder der weiter entfernten Galaxie. Doch hier ist die Linsenanordnung so präzise, dass die Hintergrundgalaxie zu einem Hufeisen verzerrt wird, das einen fast vollständigen Ring bildet. So ein Linseneffekt wurde vor mehr als 70 Jahren von Albert Einstein allgemein und ausführlich vorhergesagt. Daher werden Ringe wie dieser als Einsteinringe bezeichnet.

LRG 3-757 wurde 2007 in Daten der Sloan Digital Sky Survey (SDSS) entdeckt. Das oben gezeigte Bild ist eine nachfolgende Beobachtung mit der Wide Field Camera 3 des Weltraumteleskops Hubble. Starke Gravitationslinsen wie LRG 3-757 sind mehr als nur eine Kuriosität. Ihre Mehrfachbilder erlauben Astronominnen*, die Masse und den Gehalt an Dunkler Materie der Galaxienlinse im Vordergrund zu bestimmen.

Zur Originalseite

MACS 1206: Eine Galaxienhaufen-Gravitationslinse

Das Bild ist voller Galaxien. In einem Kreis sind verzerrte Bilder von weiter entfernten Galaxien um eine helle Galaxie in der Mitte verteilt.

Bildcredit: NASA, ESA, M. Postman (STScI) und das CLASH-Team

Es ist schwierig, eine Galaxie hinter einem Galaxienhaufen zu verstecken. Die Gravitation des näheren Haufens verhält sich wie eine riesige Linse und bricht Bilder der fernen Galaxie um die Seiten herum und verzerrt sie stark. Genau dies wurde bei diesem kürzlich veröffentlichten Bild aus der CLASH-Durchmusterung mit dem Weltraumteleskop Hubble beobachtet.

Der Haufen MACS J1206.2-0847 besteht aus vielen Galaxien. Er verzerrt das Bild einer gelbroten Hintergrundgalaxie rechts zu dem riesigen Bogen. Wenn man das Bild genau betrachtet, zeigt es mehrere weitere verzerrte Hintergrundgalaxien. Viele davon erscheinen als längliche Büschel.

Der Haufen im Vordergrund kann nur dann so glatte Bögen bilden, wenn ein Großteil seiner Masse gleichmäßig verteilte Dunkle Materie ist, die nicht in den sichtbaren Haufengalaxien konzentriert ist. Eine Analyse der Positionen dieser Gravitationsbögen ist für Forschende auch eine Methode, um die Verteilung der Dunklen Materie in Galaxienhaufen abzuschätzen. Das führt zu Rückschlüssen, wann diese riesigen Galaxienansammlungen entstanden sind.

APOD-Rückblick: Die besten Galaxienhaufen
Zur Originalseite

Zu nahe an einem schwarzen Loch

Mitten in einer sterngesprenkelten Gegend öffnet sich ein schwarzer Kreis, der wie von einem Wulst umgeben wirkt.

Credit und Bildrechte: Alain Riazuelo

Beschreibung: Was würdet ihr sehen, wenn ihr zu einem schwarzen Loch kommt? Oben seht ihr ein computergeneriertes Bild, das zeigt, wie seltsam die Dinge aussehen würden. Das schwarze Loch besitzt eine so starke Gravitation, dass Licht merklich in seine Richtung gebogen ist. Das würde einige sehr ungewöhnliche visuelle Verzerrungen verursachen.

Jeder Stern im normalen Bildfeld hat mindestens zwei helle Abbildungen, und zwar eine auf jeder Seite des schwarzen Lochs. In der Nähe des schwarzen Lochs seht ihr den gesamten Himmel, weil Licht aus jeder Richtung außen herum gebeugt wird und zu euch zurückkommt.

Die ursprüngliche Hintergrundkarte stammt aus der Himmelsdurchmusterung 2MASS in Infrarot. Die Sterne des Henry-DraperKatalogs wurden darüber gelegt. Schwarze Löcher gelten als der dichteste Zustand, den Materie annehmen kann, und es gibt indirekte Hinweise auf ihr Vorkommen in Doppelsternsystemen und in den Zentren von Kugelsternhaufen, Galaxien und Quasaren.

Zur Originalseite

Galaxiehnaufen Abell 1689 vergrößert das dunkle Universum

Im Bild sind viele Lichtflecken verteilt, die fast allesamt Galaxien sind. In der Mitte sind sie von einen blauen Nebel umgeben.

Credit: NASA, ESA, E. Jullo (JPL), P. Natarajan (Yale) und J.-P. Kneib (LAM, CNRS); Danksagung an H. Ford, N. Benetiz (JHU) und T. Broadhurst (Tel Aviv)

Beschreibung: Was ist mit diesem Galaxienhaufen los? Um herauszufinden, welche Formen an Materie der Haufen Abell 1689 enthält, braucht man nicht nur genaue Bilder von Teleskopen wie dem Weltraumteleskop Hubble, sondern auch detaillierte Computermodelle.

Fast jedes verschwommene gelbe Fleckchen im Bild ist eine ganze Galaxie. Eine genaue Untersuchung zeigt, dass viele Galaxien im Hintergrund auf seltsame Weise vergrößert und durch die Gravitationslinse des Haufens zu langen, gekrümmten Bögen verzerrt sind. Computeranalysen der Platzierung und Glätte dieser Bögen lassen vermuten, dass der Haufen zusätzlich zu der Materie in den Galaxien, die wir sehen, auch eine erhebliche Menge an Dunkler Materie enthält, die etwa wie in dem Modell verteilt ist, das in Purpur digital darübergelegt wurde.

Abell 1689 bleibt dennoch rätselhaft, weil die Bögen so zahlreich und vielfältig sind, dass es kein Modell für Dunkle Materie gibt, das alle Bögen erklären kann und trotzdem mit den Modellen für Dunkle Materie übereinstimmt, die für die Einschränkung ihrer Bewegung benötigt werden.

Die detailreiche Information, die durch Galaxienhaufen wie Abell 1689 verfügbar ist, lässt hoffen, dass eines Tages eine vollständige Erklärung gefunden wird, die nicht nur die Dunkle Materie in Haufen vollständig erklärt, sondern auch den Anteil an Dunkler Energie im Universum, die in der Sichtlinie zu den fernen Bögen nötig ist.

Zur Originalseite