Vier Quasarbilder umgeben eine Galaxienlinse

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: ESA/Hubble, NASA, Sherry Suyu et al.

Beschreibung: Das Seltsame an dieser Gruppe aus Lichtern in der Mitte ist, dass vier davon derselbe ferne Quasar sind, weil die Galaxie im Vordergrund – in der Mitte der Quasarbilder und hier vorgestellt – als unruhige Gravitationslinse wirkt. Vielleicht noch seltsamer ist, dass man durch Beobachtung des Flackerns dieses Quasars im Hintergrund die Expansionsgeschwindigkeit des Universums schätzen kann, weil die Flackerabläufe zunehmen, wenn die Expansionsgeschwindigkeit steigt. Manche Astronomen sehen das Verrückteste darin, dass diese mehrfach abgebildeten Quasare ein Hinweis auf ein Universum sind, das etwas schneller expandiert als mithilfe verschiedener Methoden, die für das frühe Universum gelten, geschätzt wurde. Das ist so, weil … nun ja, niemand weiß, warum. Zu den Gründen könnte eine unerwartete Verteilung Dunkler Materie, ein unerwarteter Gravitationseffekt oder etwas ganz Anderes zählen. Vielleicht beseitigen künftige Beobachtungen und Analysen dieses und ähnlich gebrochener Quasarbilder diese Unklarheiten.

Zur Originalseite

Abell 370: Galaxienhaufen-Gravitationslinse

Der Bogen rechts oben im Bild von Abell 370 im Sternbild Walfisch wurde schon früh entdeckt, doch erst in den 1980er-Jahren fand man eine Erklärung dafür. Im Bild befinden sich viele weitere, aber kleinere Bögen. Sie stammen von Galaxien, die weit dahinter liegen.

Bildcredit: NASA, ESA und das Hubble-SM4-ERO-Team und ST-ECF

Was ist dieser seltsame Bogen? Auf Fotos des Galaxienhaufens Abell 370 zeigte sich ein ungewöhnlicher Bogen rechts über vielen Galaxien im Haufen. Man war zwar neugierig, doch die erste Reaktion war, den Bogen nicht weiter zu erwähnen, weil man zuvor nichts Vergleichbares beobachtet hatte.

Doch Mitte der 1980er-Jahre wurden die Bilder besser. Man erkannte den Bogen als Prototyp einer neuen Art astrophysikalischer Phänomene. Es ist der Gravitationslinseneffekt. Galaxienhaufen üben diesen Effekt auf Galaxien aus, die dahinter liegen. Heute wissen wir, dass dieser Bogen zwei verzerrte Bilder einer ziemlich gewöhnlichen Galaxie zeigt, die zufällig weit hinter dem riesigen Haufen liegt.

Durch die Gravitation von Abell 370 wird das Licht dieser und anderer Galaxien im Hintergrund aufgefächert. Dadurch erreicht es den Beobachter auf mehreren Wegen, ähnlich wie Licht einer fernen Lampe, das durch den Stiel an einem Weinglas fällt. Mitte Juli 2009 nützten Astronomen das Weltraumteleskop Hubble, um Abell 370 und seine Gravitationslinsenbilder detailreicher als je zuvor abzubilden. Hubble war damals gerade erst aufgerüstet worden.

Fast alle gelben Flecken im Bild sind Galaxien in Abell 370. Ein scharfes Auge erkennt jedoch viele seltsame Bögen und verzerrte Kurven. Es sind Bilder von weit entfernten Galaxien. Abell 370 und seine Bögen bieten einen einzigartigen Zugang zur Verteilung von normaler und Dunkler Materie in Galaxienhaufen und im Universum.

Zur Originalseite

Galaxienhaufen Abell S1063 und jenseits davon

Zwischen den Galaxien des Haufens Abell S1063 im Sternbild Kranich verlaufen gekrümmte blaue Bögen. Es sind Bilder von Galaxien, die viel weiter entfernt sind. Die Bögen entstehen durch den Gravitationslinseneffekt.

Bildcredit: NASA, ESA, Jennifer Lotz (STScI)

Die Galaxien im massereichen Haufen Abell S1063 sind etwa 4 Milliarden Lichtjahre entfernt. Diese scharfe Aufnahme stammt vom Weltraumteleskop Hubble. Die Galaxien sind dicht gedrängt. Doch die blassen bläulichen Bögen sind vergrößerte Bilder von Galaxien, die weit hinter Abell S1063 liegen. Ihr Licht wäre ohne Abell S1063 nicht entdeckt worden. Sie sind etwa doppelt so weit entfernt.

Die Masse von Abell S1063 beträgt ungefähr 100 Billionen Sonnenmassen, doch sie ist großteils unsichtbar. Durch diese Masse werden die weiter entfernten Galaxien vergrößert und verzerrt. Man kennt das als Gravitationslinseneffekt. Er bietet einen interessanten, flüchtigen Blick auf Galaxien im frühen Universum. Die Verzerrung entsteht durch die gekrümmte Raumzeit. Diese wurde vor hundert Jahren erstmals von Einstein vorhergesagt. Das Bild von Hubble ist Teil von Frontier Fields, einem Programm, das die letzte Grenze erforschen soll.

Zur Originalseite

SDP.81 – eine Galaxie mit Einsteinring

In der Mitte schimmert ein blauer Fleck, er ist eine Galaxie, die durch ihre Gravitation das Bild einer weiter entfernten Galaxie wie einen Bogen um sich krümmt.

Bildcredit: Y. Hezaveh (Stanford) et al., ALMA (NRAO/ESO/NAOJ), NASA/ESA Weltraumteleskop Hubble

Kann sich eine Galaxie hinter einer anderen verstecken? Nicht im Fall von SDP.81. Die Galaxie im Vordergrund wurde mit dem Weltraumteleskop Hubble fotografiert. Sie ist blau dargestellt und verhält sich wie eine riesige Gravitationslinse, die das Licht einer Galaxie dahinter um sich herum krümmt. So wird diese sichtbar.

Die hinten gelegene Galaxie ist rot dargestellt. Sie wurde vom Atacama Large Millimeter Array (ALMA) in Radiowellenlängen abgebildet. Die Ausrichtung ist so präzise, dass das Bild der fernen Galaxie zu einer Art Teilring um die Vordergrundgalaxie gekrümmt ist. Solche Gebilde werden als Einsteinring bezeichnet.

Wenn man die Verzerrung durch die Gravitationslinse genau analysiert, zeigt sich, dass eine kleine, dunkle Begleitgalaxie zur Ablenkung beiträgt. Das ist ein weiterer Hinweis, dass viele Begleitgalaxien ziemlich schwach sind und von Dunkler Materie beeinflusst werden. Die kleine Galaxie ist der kleine weiße Punkt links. Der Einsteinring ist zwar nur ein paar Bogensekunden breit. Er ist in Wirklichkeit Zigtausende Lichtjahre groß.

Zur Originalseite

Zwei Schwarze Löcher verschmelzen

Credit der Simulation: Projekt zur Simulation eXtremer Raumzeiten

Klicke auf den roten Pfeil und schau zu, wie zwei Schwarze Löcher verschmelzen. Die Videosimulation wurde vom ersten direkten Nachweis von Gravitationswellen durch LIGO angeregt. Es läuft in Zeitlupe. In Echtzeit dauert es etwa eine Drittelsekunde.

Die Schwarzen Löcher tanzen auf einer kosmischen Bühne vor Sternen, Gas und Staub. Ihre enorme Gravitation bricht das Licht hinter ihnen in Einsteinringe. Dabei nähern sie sich einander auf Spiralbahnen. Am Ende verschmelzen sie zu einem einzigen Schwarzen Loch.

Bei der rasanten Verschmelzung der massereichen Objekte entstehen unsichtbare Gravitationswellen. Das führt dazu, dass sich das sichtbare Bild kräuselt. Noch nach der Verschmelzung der Schwarzen Löcher schwappen sie innen und außen über die Einsteinringe.

Die Gravitationswellen, die LiIGO aufgespürt hat, werden als GW150914 bezeichnet. Sie passen zur Verschmelzung Schwarzer Löcher mit 36 und 29 Sonnenmassen. Ihre Entfernung beträgt 1,3 Milliarden Lichtjahre. Das einzelne Schwarze Loch, das am Ende entsteht, besitzt 62 Sonnenmassen. Drei Sonnenmassen bleiben übrig. Diese drei Sonnenmassen wurden in Energie umgewandelt, die in Form von Gravitationswellen abgestrahlt wurde.

Zur Originalseite

SN Refsdal: Das erste vorhergesagte Supernovabild

Die Kreise im Bild markieren Stellen, an denen eine Supernova auftauchte, nachdem ihr Licht von einer Gravitationslinse in mehrere Bilder aufgespalten wurde.

Bildcredit: NASA, ESA und S. Rodney (JHU) und das FrontierSN-Team; T. Treu (UCLA), P. Kelly (UC Berkeley) und das GLASS-Team; J. Lotz (STScI) und das Frontier Fields Team; M. Postman (STScI) und das CLASH-Team; weiters: Z. Levay (STScI)

Sie ist zurück. Noch nie zuvor wurde die Beobachtung einer Supernova vorhergesagt. Es war ein einzigartiges astronomisches Ereignis und trat im Feld des Galaxienhaufens MACS J1149.5+2223 auf.

Die meisten hellen Flecken im Bild sind Galaxien im Haufen. Die aktuelle Supernova hat die Bezeichnung Supernova Refsdal. Sie ereignete sich nur einmal im fernen Universum, und zwar weit hinter diesem massereichen Galaxienhaufen. Die Gravitation führt dazu, dass sich der Haufen wie eine massereiche Gravitationslinse verhielt. Er spaltete das Bild der Supernova Refsdal in mehrere helle Bilder auf.

Eines dieser Bilder erreichte die Erde vor etwa zehn Jahren. Es ist wahrscheinlich im oberen roten Kreis dargestellt. Leider wurde es verpasst. Vier weitere helle Bilder erreichten im April ihre größte Helligkeit im unteren roten Kreis. Sie sind als erste Einsteinkreuz-Supernova um eine massereiche Galaxie im Haufen verteilt.

Doch da war noch mehr. Untersuchungen zeigten, dass wahrscheinlich noch ein sechstes helles Supernovabild auf dem Weg zur Erde war. Es würde wahrscheinlich im nächsten Jahr ankommen.

Anfang des Monats wurde dieses sechste helle Bild geborgen. Es erschien pünktlich im mittleren roten Kreis, wie es vorhergesagt worden war. Wenn wir solche Bildfolgen untersuchen, verstehen wir besser, wie Materie in Galaxien und Galaxienhaufen verteilt ist. Das führt zu neuen Erkenntnissen, wie schnell das Universum expandiert und auf welche Weise massereiche Sterne explodieren.

Zur Originalseite

Das Lächeln der Gravitation

Mitten im Bild grinst ein violettes Gesicht aus Galaxien. Es ist von Bögen eingerahmt. Die Bögen sind die verzerrten Bilder von Galaxien, die weit dahinter liegen.

Bildcredit: Röntgen – NASA / CXC / J. Irwin et al.; Optisch – NASA/STScI

Die allgemeine Relativitätstheorie von Albert Einstein wurde diesen Monat vor 100 Jahren veröffentlicht. Sie sagte den Effekt der Gravitationslinsen vorher. Hier sehen wir ferne Galaxien durch die Spiegel der Weltraumteleskope Chandra und Hubble im Röntgenbereich und in sichtbarem Licht. Der Effekt der Gravitationslinsen verleiht diesen Galaxien eine seltsame Erscheinung.

Die beiden großen elliptischen Galaxien gehören einer Gruppe mit dem Spitznamen Grinsekatzen-Galaxiengruppe. Sie sind von verräterischen Bögen umrahmt. Die Bögen sind optische Bilder weit entfernter Galaxien im Hintergrund. Sie werden durch die Gravitation der gesamten Masse der Gruppe, die im Vordergrund liegt, gekrümmt. In der vorne liegenden Gruppe befindet sich Dunkle Materie.

Die beiden großen elliptischen Galaxien, die die „Augen“ bilden, sind die hellsten Mitglieder der Gruppe. Sie verschmelzen miteinander. Ihre jeweilige Stoßgeschwindigkeit beträgt fast 1350 km/s, sie erhitzt Gas auf Millionen Gad Celsius. Dabei entsteht das violett gefärbte Röntgenlicht. Seid ihr neugierig auf die verschmelzenden Galaxien? Die Grinsekatzen-Gruppe lächelt 4,6 Milliarden Lichtjahre entfernt im Sternbild Großer Bär.

Zur Originalseite

Der Galaxienhaufen CL0024+1654 biegt und bricht Bilder

Mitten im Bild ist eine Ansammlung ellliptischer, gelb leuchtender Galaxien. Außen herum sind blaue Bögen angeordnet, die wohl alle zu derselben Galaxie im Hintergrund gehören. Das ganze Bild ist voller Galaxien.

Bildcredit: NASA, ESA, H. Lee und H. Ford (Johns Hopkins U.)

Was sind diese seltsamen blauen Objekte? Viele der hellsten blauen Bilder stammen von einer einzigen ungewöhnlichen Galaxie. Sie ist blau und ringähnlich. Sie wirkt, als wäre sie mit Perlen besetzt. Zufällig liegt sie hinter einem riesigen Galaxienhaufen. Hier erscheinen die Haufengalaxien typischerweise gelb. Zusammen mit der Dunklen Materie im Haufen bilden sie eine Gravitationslinse.

Eine Gravitationslinse kann mehrere Bilder einer Galaxie erzeugen, die weit dahinter liegt. Es funktioniert ähnlich wie die vielen Lichtpunkte, die man sieht, wenn man eine ferne Straßenlampe durch ein Weinglas betrachtet. Die Galaxie im Hintergrund entsteht vielleicht gerade erst. Die markante Form führte zu dem Schluss, dass ihre Einzelbilder – vom Zentrum des Haufens aus gesehen – auf 4, 10, 11 und 12 Uhr stehen.

Mitten im Haufen ist ein blauer Fleck. Er ist wahrscheinlich ein weiteres Bild derselben dahinter liegenden Galaxie. Eine aktuelle Untersuchung besagt, dass wir mindestens 33 Bilder von 11 verschiedenen Galaxien im Hintergrund unterscheiden können.

Der Galaxienhaufen CL0024+1654 wurde im November 2004 vom Weltraumteleskop Hubble abgebildet.

Zur Originalseite