Im Nachleuchten festgehalten

Links ist ein Gammastrahlenblitz, der mit einem Spektrum markiert ist. Von dem Blitz geht  diagonal nach oben ein Strahl aus, der durch zwei Galaxien verläuft. Hinter jeder Galaxie ist ein weiteres Spektrum angebracht.

Illustrationscredit: ESO, L. Calçada; Forschungsteam: Sandra Savaglio (MPE) et al.

Diese künstlerische Darstellung zeigt zwei ferne Galaxien im Nachleuchten von GRB090323. Die Galaxien entstanden etwa 2 Milliarden Jahre nach dem Urknall. GRB090323 war ein Gammastrahlenblitz, sein Licht durchquerte fast das ganze Universum.

Der Ausbruch wurde im März 2009 vom Gammastrahlen-Weltraumteleskop Fermi entdeckt. Der Gammablitz strahlte durch seine Heimatgalaxie und eine weitere Galaxie in der Nähe. Diese Anordnung wurde aus dem Spektrum des Nachleuchtens geschlossen.

Das Nachleuchten des Blitzes verblasst langsam. Das Spektrum des Nachleuchtens wurde mit einer Einheit des Very Large Telescope (VLT) der Europäischen Südsternwarte beobachtet. Es lieferte ein überraschendes Ergebnis, nämlich dass die fernen Galaxien mehr schwere Elemente enthalten als die Sonne. Sie weisen die höchste Anreicherung an schweren Elementen auf, die je im frühen Universum beobachtet wurde.

Schwere Elemente reichern ältere Galaxien im lokalen Universum an. Sie sind in früheren Sterngenerationen entstanden. Somit haben diese jungen Galaxien im Vergleich zu unserer Milchstraße eine ungeheure Sternbildungsrate und chemische Entwicklung durchlaufen.

Der Ort des Ausbruchs liegt in der Illustration links. Das Licht wandert vom Ausbruch aus durch die Galaxien rechts daneben. Dunkle Absorptionslinien im Spektrum des Nachleuchtens zeigen die Elemente in den Galaxien. Diese Spektren sind als Einschübe dargestellt. Sternforschende auf dem Planeten Erde sind etwa 12 Milliarden Lichtjahre außerhalb des rechten Bildrandes.

Zur Originalseite

An der Quelle des Goldes

Von oben ragt ein dunkler Himmelskörper mit goldfarbenen Schlieren ins Bild, darunter ist ein kleinerer Körper mit einer blauen und weißen Korona.

Bildcredit: Dana Berry, NASA

Woher stammt das Gold in eurem Schmuck? Niemand weiß das genau. Im Sonnensystem gibt es anscheinend mehr Gold, als im frühen Universum, in den Sternen und sogar bei typischen Supernovaexplosionen entstanden sein kann.

Kürzlich schlugen Forschende eine neue Quelle vor. Sie vermuten, neutronenreiche schwere Elemente wie Gold könnten am leichtesten bei seltenen neutronenreichen Explosionen entstehen. Ein Beispiel ist die Kollisionen von Neutronensternen.

Dieses Bild ist eine künstlerische Illustration. Zwei Neutronensterne kommen einander auf spiralförmigen Bahnen näher. Kurz darauf kollidieren sie. Kollisionen von Neutronensternen wurden auch als Ursprung der kurzen Gammablitze vorgeschlagen. Vielleicht besitzt ihr also schon ein Andenken an eine der mächtigsten Explosionen im Universum!

Zur Originalseite

Ein unerwarteter Blitz im Krebsnebel

Auf zwei Bildfeldern sind je zwei rot umrandete helle Lichtquellen zu sehen. Die obere ist der Krebsnebel, er leuchtet auf dem rechten Bild vom April 2011 hell auf.

Credit: NASA, DOE, Fermi LAT, R. Buehler (SLAC, KIPAC)

Beschreibung: Warum blitzt der Krebsnebel auf? Niemand weiß das genau. Das ungewöhnliche Verhalten wurde im Lauf der letzten paar Jahre entdeckt. Es tritt anscheinend nur in sehr energiereichem Licht auf: im Spektrum von Gammastrahlen.

Vor erst einem Monat zeigten Beobachtungen des Krebsnebels mit dem Gammastrahlenteleskop Fermi ein unerwartetes Aufleuchten im Licht von Gammastrahlen. Dabei erreichte der Nebel etwa das Fünffache seiner üblichen Helligkeit in diesem Spektralbereich. Nach nur wenigen Tagen verblasste er wieder.

Üblicherweise ist die betroffene Region umso kleiner, je schneller die Veränderung geschieht. Das ist vielleicht ein Hinweis, dass der Krebspulsar am Geschehen beteiligt ist. Der mächtige Pulsar im Zentrum des Nebels ist ein kompakter Neutronenstern, der 30 Mal pro Sekunde rotiert.

Die Überlegungen richten sich besonders auf Veränderungen des Magnetfeldes, das vermutlich den mächtigen Pulsar umgibt. Rasche Veränderungen im Magnetfeld könnten zu Wellen rasch beschleunigter Elektronen führen, welche die Blitze abstrahlen könnten, möglicherweise auf ähnlichen Wegen wie unsere Sonne.

Dieses Bild zeigt, wie der Krebsnebel normalerweise im Vergleich zum Geminga-Pulsar im Gammastrahlenlicht aussieht, und wie er aussah, als er heller wurde.

Zur Originalseite

Die GRB 110328A-Symphonie

Mitten im Bild leuchtet ein heller Stern mit rotem Rand, der mit einem Pfeil markiert ist.

Credit: NASA, ESA und A. Fruchter (STScI)

Beschreibung: Am 28. März begann auf der ganzen Welt eine plötzliche Symphonie an Beobachtungen, als der Satellit Swift im Erdorbit einen Ausbruch hochfrequenter Gammastrahlen bei GRB 110328A beobachtete. Als dieselbe Quelle nach einer Pause von 45 Minuten nochmals aufblitzte, war klar, dass dieses Ereignis kein typischer Gammablitz war.

Zwölf Stunden nach dem ersten Ausbruch begannen Beobachtungen des optischen Gegenstücks am Nordic Optical Telescope (2,5 Meter) im mittleren Frequenzbereich. Am nächsten Morgen wurde die Explosion von den ELVA-Radioteleskopen in den USA beobachtet, diesmal in den niedrigen Bariton-Frequenzen von Radiowellen.

Später spielten viele optische Teleskope mit, zum Beispiel das 8-Meter-Teleskop Gemini Nord auf Hawaii. Alle beobachteten das optische Gegenstück von GRB 110328A. Das Röntgenteleskop Chandra vermaß die ungewöhnliche Quelle in den höheren Frequenzen von Röntgenstrahlen und beobachtete eine Woche lang zeitweise in den noch höherfrequenten Gammastrahlen.

In diesen Chor stimmte das Weltraumteleskop Hubble ein und nahm dieses Bild im optischen und infraroten Licht auf. Es bestätigte, dass der Blitz in der Sichtlinie einer Galaxie mit einer Rotverschiebung von 0,351 lag. Wenn die Explosion zu dieser Galaxie gehört, ereignete sie sich, als das Universum etwa zwei Drittel seines jetzigen Alters hatte.

Es gibt Überlegungen, ob der ungewöhnliche Gammastrahlen-Blitz von einem Stern stammt, der von einem sehr massereichen Schwarzen Loch im Zentrum der Galaxie auseinandergerissen wird. Die rätselhaften Bestandteile der fernen Detonation werden weiterhin untersucht.

Zur Originalseite

Riesige Gammastrahlenblasen um die Milchstraße gefunden

Eine ovale Fläche auf schwarzem Hintergrund ist rot und blau gefleckt, Waagrecht in der Mitte sind auch weiße und schwarze Flecken. Text oben: Fermi data reveal giant gamma-ray bubbles

Credit: NASA, DOE, Fermi-Gammastrahlen-Weltraumteleskop, LAT-Detektor, D. Finkbeiner et al.

Beschreibung: Wusstet ihr, dass sich in unserer Galaxis, der Milchstraße, riesige Blasen befinden, die Gammastrahlen aus der Richtung des galaktischen Zentrums aussenden? Nein? Das wusste auch sonst niemand. Im Lauf der letzten zwei Jahre wurden die Daten des Satelliten Fermi im Erdorbit immer schärfer, und damit wurde eine große, ungewöhnliche Struktur in der Richtung unseres galaktischen Zentrums immer deutlicher erkennbar.

Die beiden Blasen sind zusammen als das rot und weiß gefleckte Oval erkennbar, das die Mitte dieses gestern veröffentlichten Ganzhimmelsbildes umgibt. Die Ebene unserer Galaxis verläuft waagrecht in der Bildmitte. Wenn man annimmt, dass die Blasen aus dem galaktischen Zentrum stammen, sind sie riesig – von der Größe her konkurrieren sie mit der ganzen Galaxis, sie messen von oben bis unten etwa 50.000 Lichtjahre.

Schon auf früheren Ganzhimmelskarten gab im Radio-, Mikrowellen– und Röntgenbereich Hinweise auf die Blasen. Der Ursprung der Blasen ist derzeit unbekannt, wird jedoch voraussichtlich in den kommenden Jahren erforscht.

Zur Originalseite

Fermi katalogisiert den Gammastrahlen-Himmel

Dargestellt ist eine Grafik des ganzen Himmels als blaues Oval, die aus Daten des Teleskops Fermi erstellt wurde. Durch die Mitte verläuft ein hellblauer Streifen, das ist die Milchstraße.

Credit: NASA, DOE, Internationale Fermi-LAT-Arbeitsgruppe

Was leuchtet am Himmel in Gammastrahlen? Das Gammastrahlen-Weltraumteleskop Fermi bietet die bisher vollständigste Antwort auf diese Frage. Es erstellte einen ersten Himmelskatalog. Fermis Quellen kosmischer Gammastrahlen zeigen die energiereichsten Teilchenbeschleuniger der Natur. Sie liefern Photonen mit 100 MeV bis 100 GeV. Das ist mehr als das 50-Millionenfache bis 50-Milliardenfache der Energie von sichtbarem Licht.

Elf Monate lang durchmusterte Fermi den Himmel mit seinem Large Area Telescope (LAT). Aus den Daten wurden 1451 Quellen katalogisiert. Zu diesen Quellen gehören energiereiche Galaxien mit intensiver Sternbildung. Auch aktive galaktische Kerne (AGN) außerhalb der Michstraße zählen dazu. Auch in unserer Milchstraße befinden sich viele Pulsare (PSR) und Pulsarwindnebel (PWN). Außerdem gibt es Supernovaüberreste (SNR), Röntgen-Doppelsterne (HXB) und Mikroquasare (MQO).

In der Mitte verläuft die Milchstraße durch Fermis Himmelskarte. Die diffuse Gammastrahlung in der galaktischen Ebene verläuft waagrecht durch das Bild. Wenn ihr den Mauspfeil über die Karte schiebt, werden die katalogisierten Gammastrahlenquellen markiert. 630 katalogisierte Quellen von Gammastrahlen sind noch unbekannt. Sie können also nicht mit beobachteten Quellen im niedrigeren Energiebereich in Verbindung gebracht werden.

Zur Originalseite

Fermis Gammastrahlen-Pulsare

Der ganze Himmel ist dunkelblau oval dargestellt, waagrecht verläuft ein rotes Band. Über das Bild sind einzelne Strahlungsquellen verteilt.

NASA, DOE, Fermi-LAT-Arbeitsgemeinschaft

Pulsare entstehen in Supernovae. Sie sind rotierende Neutronensterne. Das sind kollabierte Kerne von Sternen. Diese kollabierten Kerne bleiben bei finalen Explosionen massereicher Sterne übrig.

Pulsare werden meist entdeckt, indem man ihre regelmäßigen Radiopulse entdeckt und erforscht. Nun wurden zwei Dutzend Pulsare vom Weltraumteleskop Fermi in der Energie extremer Gammastrahlen entdeckt. 16 Pulsare fand man nur durch ihre gepulsten Emissionen in Gammastrahlen.

Diese Karte zeigt den ganzen Himmel in Gammastrahlen. In der Mitte verläuft die Ebene unserer Milchstraße. Die Positionen von Pulsaren sind markiert. Die 16 neuen Fermi-Pulsare sind gelb eingekreist. 8 Radiopulsare waren schon zuvor bekannt. Sie sind mit rosaroten Kreisen markiert.

Die hellsten bizarren Sternenreste am Gammastrahlenhimmel sind der Vela-Pulsar, der Krebs-Pulsar und der Geminga-Pulsar auf der rechten Seite. Die Pulsare Taz, Eel und Rabbit wurden nach den Nebeln benannt, die sie mit Energie versorgen. Auch die Pulsare Gamma Cygni und CTA 1 links gehören zu den expandierenden Supernovaüberresten gleichen Namens.

Zur Originalseite

Ferimis erstes Bild

Siehe Erklärung. Durch ein leuchtendblaues ovales Bild des ganzen Himmels verläuft waagrecht ein rotes Band, das die Milchstraße darstellt.

Credit: NASA, DOE, das internationale LAT-Team

Beschreibung: Das Gamma-ray Large Aera Space Telescope (GLAST), das am 11. Juni gestartet wurde um das Universum in extremen Energiebereichen zu erforschen, wurde nun offiziell in Fermi Gamma-ray Space Telescope umbenannt, zu Ehren des Nobelpreisträgers Enrico Fermi (1901-1954), Pionier der Hochenergiephysik. Nach der Testphase senden nun die beiden Instrumente Fermis, der Gamma-ray Burst Monitor (GBM) und das Large Area Telescope (LAT), regelmäßig Daten.

Dieses Falschfarbenbild zeigt Fermis erste Karte des Gammastrahlen-Himmels von LAT. Es zeigt den ganzen Himmel, das Zentrum unserer Milchstraße und die galaktische Ebene wurden über die Bildmitte projiziert.

Was leuchtet am Gammastrahlenhimmel? In der galaktischen Ebene kollidiert energiereiche kosmische Strahlung mit Gas und Staub und erzeugt das diffuse Gammastrahlen-Leuchten. Starke Emissionen von rotierenden Neutronensternen oder Pulsaren und weit entfernten aktiven Galaxien, bekannt als blazars, sind zu erkennen, wenn Sie den Mauspfeil über die Karte schieben.

Als Vorspiel für künftige Entdeckungen kombiniert dieses bemerkenswerte Ergebnis die Beobachtungen von nur 4 Tagen, was einem Jahr an Beobachtungen mit dem Compton-Gammastrahlenteleskop in den 1990er-Jahren entspricht. Zusätzlich zur Möglichkeit Gammastrahlenblitze zu beobachten erlaubt die stark verbesserte Empfindlichkeit Fermi tiefer in das Hochenergie-Universum hinauszublicken.

Zur Originalseite