Ganymed, der größte Mond

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL, Raumsonde Galileo

Beschreibung: Wie sieht der größte Mond im Sonnensystem aus? Jupiters Mond Ganymed ist sogar größer als Merkur und Pluto, er hat eine eisige Oberfläche, die mit hellen jungen Kratern gesprenkelt ist, welche eine Mischung aus älterem, dunklerem, von mehr Kratern übersätem Gelände überlagern, und das von Rillen und Graten umgeben ist. Die große, runde Struktur rechts oben heißt Galileo Regio, sie ist eine urzeitliche Region unbekannten Ursprungs. Ganymed besitzt vermutlich eine Ozeanschicht, die mehr Wasser besitzt als die Erde und Leben enthalten könnte. Wie auch der Erdmond zeigt Ganymed seinem Zentralplaneten – in diesem Fall Jupiter – immer die gleiche Seite. Dieses Bild fotografierte vor 20 Jahren die NASA-Raumsonde Galileo, deren Mission 2003 mit einem Tauchgang in Jupiters Atmosphäre endete. Derzeit kreist die NASA-Raumsonde Juno um Jupiter. Sie untersucht den inneren Aufbau des Riesenplaneten und viele andere Eigenschaften.

Zur Originalseite

Möglicherweise bewohnbare Monde

Vier Monde sind abgebildet, von links oben nach rechts unten: Europa, Ganymed, Enceladus, Titan.

Bildcredit: Forschung und Zusammenstellung – René Heller (McMaster Univ.) et al.; Bildfelder – NASA/JPL/Space Science Institute – Bildrechte: Ted Stryk

Beschreibung: Für die Astrobiologie sind diese vier Monde die vielleicht interessantesten im Sonnensystem. Sie sind im gleichen Maßstab dargestellt. Ihre Erforschung durch interplanetare Raumsonden führte zur Idee, dass nicht nur Planeten, sondern auch Monde eine Umgebung bieten könnten, die günstig für Leben ist.

Die Jupiter-Mission Galileo fand bei Europa einen globalen Ozean aus flüssigem Wasser unter der Oberfläche und Hinweise auf Meere im Inneren von Ganymed. Bei Saturn entdeckte die Sonde Cassini ausströmende Fontänen aus Wassereis auf Enceladus. Diese Fontänen sind ein Hinweis, dass sich sogar auf diesem kleinen Mond wärmeres Wasser unter der Oberfläche befindet. Unter der dichten Atmosphäre des großen Mondes Titan findet Cassini immer noch Oberflächenseen aus gefrorenen, aber dennoch flüssigen Kohlenwasserstoffen.

Bei der Suche außerhalb des Sonnensystems lassen neue Forschungen vermuten, dass es mehr Exomonde als Exoplaneten in den habitablen Zonen von Sternen geben könnte. Damit wären Monde die häufigsten bewohnbaren Welten im Universum.

Zur Originalseite

Ios Oberfläche ist in Arbeit

Die Oberfläche des Jupitermondes Io erinnert an eine Pizza. Die Farben sind hier nicht realistisch, sondern verstärkt, um die unterschiedlichen Regionen erkennbar zu gestalten. Die Oberfläche ist von Vulkankratern übersät.

Bildcredit: Galileo-Projekt, JPL, NASA

Wie das Zentrum eurer Lieblingsstadt oder jeder Webauftritt, der etwas auf sich hält, ist Ios Oberfläche ständig in Arbeit. Dieser Jupitermond ist der vulkanisch aktivste Körper im Sonnensystem. Seine bizarre Oberfläche wird ständig von Lavaflüssen bearbeitet und umgestaltet.

Dieses hoch aufgelöste Kompositbild entstand aus Daten der NASA-Raumsonde Galileo aus dem Jahr 1996. Es zeigt die Seite von Io, die ständig von Jupiter fortgerichtet ist. Das Bild wurde kontrastverstärkt. Es betont Ios Oberflächenhelligkeit und Farbvariationen. Die kleinsten Strukturen sind nur 2,4 Kilometer groß. Auffällig ist, dass Einschlagkrater fehlen. Wahrscheinlich wird die ganze Oberfläche schneller von neuen vulkanischen Ablagerungen bedeckt, als neue Krater entstehen.

Was ist der Motor dieses vulkanischen Kraftwerks? Die Energiequelle sind vermutlich die Gezeiten, die sich ständig ändern. Sie entstehen durch die Gravitation von Jupiter und den anderen galileischen Monden, während Io um den massereichen Gasriesenplaneten kreist. Die Gezeiten heizen Ios Inneres auf. So entsteht die schwefelige vulkanische Aktivität.

Zur Originalseite

Jupiters Ringe – enthüllt

Vor der Schwärze des Weltraums zeichnet sich der helle Rand von Jupiter ab, der von der Sonne beleuchtet wird. Die Sonne steht hinter Jupiter. Auch Jupiters Ringteilchen werden von der Sonne beleuchtet und sind vor dem dunklen Hintergrund zu sehen.

Bildcredit: M. Belton (NOAO), J. Burns (Cornell) et al., Projekt Galileo, JPL, NASA

Warum hat Jupiter Ringe? 1979 entdeckte die vorbeifliegende Raumsonde Voyager 1 Jupiters Ringe. Ihr Ursprung war ein Rätsel. Die Raumsonde Galileo umkreiste Jupiter von 1995 bis 2003. Ihre Daten zeigen, dass die Ringe durch Meteoroideneinschläge auf kleinen Monden in der Nähe entstehen. Wenn zum Beispiel ein kleiner Meteoroid den winzigen Mond Adrastea trifft, bohrt er sich in seine Oberfläche und verdampft. Der explodierte Schmutz und Staub schwenkt in eine Jupiterbahn ein.

Oben zeigt Galileo eine Sonnenfinsternis, die durch Jupiter entstand. Das reflektierte Sonnenlicht zeigt kleine Staubpartikel hoch oben in der Jupiteratmosphäre, aber auch Staubpartikel, welche die Ringe bilden.

APOD-Rückblick: Heute und jeden Tag
Zur Originalseite

Das Wasser auf Europa

Rechts ist die Erde ohne Wasser, links der Jupitermond Europa. Vor beiden Himmelskörpern ist das Wasser, das sie enthalten, als blaue Perle dargestellt. Auf dem kleinen Mond Europa gibt es mehr Wasser als auf der Erde.

Illustrationscredit und Bildrechte: Kevin Hand (JPL/Caltech), Jack Cook (Woods Hole Ozeanographisches Institut), Howard Perlman (USGS)

Wie viel von Jupiters Mond Europa besteht aus Wasser? Der Großteil. Die Raumsonde Galileo erforschte von 1995 bis 2003 das Jupitersystem. Die gewonnenen Daten zeigen, dass Europa einen tiefen globalen Ozean aus flüssigem Wasser besitzt. Er befindet sich unter einer Oberfläche aus Eis.

Der Ozean unter der Oberfläche könnte zusammen mit der Eisschicht durchschnittlich 80 bis 170 Kilometer tief sein. Wenn man eine Dicke von etwa 100 Kilometern annimmt und Europas Wasser in einer Kugel sammelt, hätte diese Kugel einen Radius von 877 Kilometern.

Die faszinierende Illustration veranschaulicht das Verhältnis. Sie zeigt links Europas theoretische Wasserkugel zusammen mit Europa. Rechts seht ihr das Wasser des Planeten Erde. Europas globaler Ozean hat ein 2-3 Mal größeres Volumen an Wasser als irdische Ozeane. Damit ist Europa ein verlockendes Ziel für die Suche nach extraterrestrischem Leben in unserem Sonnensystem.

Helft APOD: Ist der Text auf APOD leicht lesbar und verständlich?

Zur Originalseite

Hammer und Feder auf dem Mond

Bildcredit: Apollo 15-Besatzung, NASA

Wenn ihr einen Hammer und eine Feder gleichzeitig fallen lasst, was erreicht zuerst den Boden? Auf der Erde der Hammer. Doch ist der Grund dafür nur der Luftwiderstand?

Schon vor Galileo überlegten Forschende und führten einfache Experimente durch. Sie meinten, dass ohne Luftwiderstand alle Objekte gleich fallen müssten. Galileo testete dieses Prinzip und fand heraus, dass zwei schwere Bälle mit unterschiedlicher Masse gleichzeitig den Boden erreichen. Historiker bezweifeln, dass Galileo dieses Experiment im Schiefen Turm von Pisa in Italien durchführte, wie der Volksmund berichtet.

Ein gut geeigneter Ort, wo man das Äquivalenzprinzip ohne Luftwiderstand testen kann, ist der Erdmond. Daher ließ der Apollo-15-Astronaut David Scott 1971 einen Hammer und eine Feder gleichzeitig auf den Mondboden fallen. Tatsächlich erreichten Hammer und Feder gleichzeitig den Mondboden, genau wie Galileo, Einstein und andere vorhergesagt hatten.

Das hier demonstrierte Äquivalenzprinzip besagt, dass die Beschleunigung eines Objekts durch die Gravitation nicht von seiner Masse, Dichte, Zusammensetzung, Farbe, Form oder Ähnlichem abhängt. Das Äquivalenzprinzip ist in der modernen Physik so wichtig, dass seine Auswirkung noch heute untersucht wird.

Zur Originalseite

Io: Die Prometheus-Gaswolke

Die obere Hälfte des Jupitermondes Io im Bild ist beleuchtet. Der Mond ist von bunten Schlieren und Strukturen überzogen.

Credit: Galileo-Projekt, JPL, NASA

Beschreibung: Was geschieht auf Jupiters Mond Io? Dieses Farbkompositbild der Roboter-Raumsonde Galileo, die von 1995 bis 2003 Jupiter umkreiste, zeigt zwei schwefelige Ausbrüche auf dem vulkanischen Jupitermond Io.

Im oberen Bildbereich über Ios Rand ragt eine bläuliche Wolke etwa 140 Kilometer über die Oberfläche einer vulkanischen Caldera, die als Pillan Patera bezeichnet wird. In der Bildmitte ist nahe der Tag-Nacht-Schattenlinie die ringförmige Prometheus-Gaswolke zu sehen. Sie erhob sich etwa 75 Kilometer über Io, während sie einen Schatten unter den Vulkanschlot warf.

Die Prometheus-Gaswolke wurde nach dem griechischen Gott benannt, der den Sterblichen das Feuer gab. Sie ist auf jedem Bild zu sehen, das je von der Region gemacht wurde, und zwar seit den Voyager-Vorbeiflügen 1979. Das zeigt, dass diese Gaswolke möglicherweise mindestens 18 Jahre lang ständig aktiv war.

Das oben gezeigte, digital geschärfte Bild von Io wurde 1997 aus einer Entfernung von etwa 600.000 Kilometern aufgenommen. Aktuelle Analysen der Galileo-Daten lieferten Hinweise auf einen Magmaozean unter der Oberfläche von Io.

Zur Originalseite

Dreivierteleuropa

Etwa die Hälfte des Jupitermondes Europa ist beleuchtet und ragt nach oben ins Bild. Der beige-weiße Mond ist von vielen rötlichen Rissen überzogen.

Credit: Galileo-Projekt, JPL, NASA; Bildrechte: Neubearbeitung von Ted Stryk

Beschreibung: Die Phase dieses Mondes wirkt vertraut, der Mond selbst jedoch nicht. Diese Dreiviertelphase zeigt nämlich einen Teil von Jupiters Mond Europa. Die Robotersonde Galileo fotografierte das Bildmosaik bei ihrer Mission von 1995 – 2003 im Orbit um Jupiter.

Ebenen aus hellem Eis sind von Rissen überzogen, die bis zum Horizont reichen, sowie dunklen Flecken, die wahrscheinlich Eis und Schmutz enthalten. Höher liegendes Gelände ist vor allem nahe dem Terminator erkennbar, wo es Schatten wirft. Europa ist fast gleich groß wie der Erdmond, aber viel glatter. Sie besitzt nur wenig Hochland und kaum große Einschlagskrater.

Bilder der Raumsonde Galileo lassen vermuten, dass sich unter der eisigen Oberfläche flüssige Ozeane befinden. Um den Vermutungen nachzugehen, ob diese Ozeane Leben enthalten, starteten nun ESA und NASA die Vorentwicklung einer Mission zu Europa und Jupiter. Der Start dieser Raumsonde ist für 2020 geplant. Sie soll Jupiter und vor allem Europa weiter untersuchen.

Wenn das Oberflächeneis dünn genug ist, könnte eine künftige Mission Wasserroboter ausbringen, um sich zum Ozean durchzugraben und nach Leben zu suchen.

Zur Originalseite