Endlich GLAST

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit:  NASA, DOE, Arbeitsgemeinschaft Gammastrahlen-Weltraumteleskop Fermi

Beschreibung: Diese Delta-II-Rakete, die vor langer Zeit von einem sehr nahen Planeten durch eine wogende Rauchwolke aufstieg, verließ am 11. Juni 2008 um 12:05 Uhr EDT die Startrampe 17-B der Luftwaffenstation Cape Canaveral. Gemütlich in der Ladebucht lag GLAST, das Gammastrahlen-Großflächen-Weltraumteleskop.

GLASTs Detektortechnologie wurde für den Einsatz in terrestrischen Teilchenbeschleunigern entwickelt. Daher kann GLAST im Orbit Gammastrahlen von extremen Umgebungen über der Erde und im fernen Universum aufspüren, darunter in sehr massereichen Schwarzen Löchern in den Zentren ferner aktiver Galaxien und die Quellen mächtiger Gammastrahlenausbrüche. Diese eindrucksvollen kosmischen Beschleuniger erreichen Energien, die in erdgebundenen Laboren nicht möglich sind.

Seine Bezeichnung lautet nun Gammastrahlen-Weltraumteleskop Fermi. Am 10. Jahrestag seines Starts mögen die Fermi-Wissenschaftsendspiele beginnen.

Zur Originalseite

Fermi wissenschaftliche Stichwahl

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Das Gammastrahlenteleskop Fermi der NASA wurde am 11. Juni 2008 in die Umlaufbahn gebracht. Seine Instrumente erkennen Gammastrahlen – diese sind Licht, das Tausende bis Hunderte Milliarden Mal energiereicher ist als das, was wir mit unseren Augen sehen.

Während der letzten zehn Jahre führte Fermis energiereiche Forschungsreise zu einer Fülle erstaunlicher Entdeckungen, von extremen Umgebungen über unserem schönen Planeten bis hin ins ferne Universum. Nun können Sie Fermis bisher bestes Ergebnis wählen.

Zu Fermis 10. Jahrestag wurden Bilder, welche 16 wissenschaftliche Ergebnisse darstellen, ausgewählt und zu Gruppen angeordnet. Folgen Sie diesem Link und wählen Sie in der ersten Runde aus jedem Paar Ihre Favoriten. Alle zwei Wochen findet die Wahl der nächsten Runde statt – kommen Sie wieder! Der Sieger des Fermi-Finales wird am 6. August veröffentlicht – zum zehnjährigen Jubiläum der ersten wissenschaftlichen Daten von Fermi.

Zur Originalseite

Gammastrahlen-Erde und -Himmel

Der gelbe Rand ist die helle Gammastrahlung von der Erde. Diagonal in der Mitte verläuft die Milchstraße. Das Bild ist eine Kleiner-Planet-Projektion aus Daten des Gammastrahlenteleskops Fermi im Weltraum.

Bildcredit: International Fermi Large Area Telescope Collaboration, NASA, DOE

Gammastrahlen sind die energiereichste Form von Licht. Für ein Gammastrahlenteleskop im Erdorbit ist die Erde die hellste Lichtquelle.

Die kosmische Strahlung aus dem All besteht aus Teilchen. Wenn energiereiche Teilchen auf die Atmosphäre prallen, verströmt die Erde Gammastrahlen. Diese Wechselwirkung schützt die Erdoberfläche vor gefährlicher Strahlung.

Diese ungewöhnliche Ansicht von Erde und Himmel entstand mit dem Large Area Telescope des Gammastrahlenobservatoriums Fermi in der Umlaufbahn. Sie wird von Gammastrahlen bestimmt. Die Beobachtungsdaten für dieses Bild wurden aufgenommen, wenn das Zentrum unserer Milchstraße nahe am Zenit stand, also direkt über dem Satelliten Fermi. Im Bild befindet sich der Zenit in der Bildmitte.

Die Erde und der Nadir befinden sich genau unter dem Satelliten. Sie verlaufen am Rand des Bildes. So entstand eine Projektion der Erde und des ganzen Himmels aus Fermis Blickwinkel in der Umlaufbahn.

Das Farbschema hat eine logarithmische Skala. Gammastrahlen mit geringer Intensität wird in Blau gezeigt. Strahlung mit hoher Intensität ist in gelblichen Farbtönen abgebildet. Das hellere Gammastrahlenleuchten unseres Planeten flutet den Rand des Bildfeldes. Der intensiv gelbe Ring zeigt den Erdrand. Gammastrahlenquellen am Himmel in der relativ blassen Milchstraße sind diagonal über die Mitte verteilt.

Fermi wurde am 11. Juni 2008 gestartet, um das energiereiche Universum zu erforschen. Diese Woche feierte Fermi den 2000. Tag im niedrigen Erdorbit.

Zur Originalseite

Fermi-Epizyklen: Der Pfad des Vela-Pulsars

Ein Kreus auf dunklem Hintergrund ist von vielen hellen Linien überzogen, die einander überlagern. Dabei entsteht eine rosettenartige Form.

Bildcredit: NASA, DOE, Internationale Fermi LAT-Zusammenarbeit

Das Gammastrahlen-Weltraumteleskop Fermi erforscht den Kosmos in extremen Energiebereichen. Es umrundet alle 95 Minuten den Planeten Erde. Dabei schwankt es absichtlich auf wechselnden Umlaufbahnen nach Norden und Süden, um mit seinem Large Area Telescope (LAT) den Himmel zu vermessen. Die Raumsonde rotiert auch. Das sorgt dafür, dass die Solarpaneele, welche die Energie liefern, auf die Sonne gerichtet bleiben. Die Achse ihrer Bahn präzediert wie ein Kreisel. Die Rotationsachse vollendet alle 54 Tage einen Umlauf.

Diese vielen Bewegungszyklen führen dazu, dass die Pfade von Gammastrahlenquellen aus Sicht der Raumsonde komplexe Muster zeichnen. Diese Darstellung veranschaulicht das, sie zeigt den hypothetischen Pfad des Vela-Pulsars. Die Darstellung ist auf das Bildfeld des LAT-Instruments zentriert, sie zeigt ein 180 Grad breites Bildfeld und folgte der Position des Vela-Pulsars von August 2008 bis August 2010. Die helle Konzentration an Linien um die Mitte zeigt, dass sich der Vela-Pulsar meistens in der sensitiven Region des LAT-Detektors befand.

Der Vela-Pulsar entstand bei der finalen Explosion eines massereichen Sterns in der Milchstraße. Er ist ein Neutronenstern, der 11 Mal pro Sekunde rotiert. Im Spektrum der Gammastrahlen ist er die hellste und beständige Quelle am Himmel.

Zur Originalseite

Sonnenfackel am Gammastrahlenhimmel

Zwei Ovale zeigen den Himmel in Gammastrahlen. Im oberen Oval ist das hellste Licht der Vela-Pulsar, im unteren Oval vom 7. März leuchtet die Sonne um ein Vielfaches heller als alles andere.

Bildcredit: NASA, DOE, Internationale Fermi LAT- Arbeitsgemeinschaft

Was leuchtet am Gammastrahlenhimmel? Die Antwort lautet normalerweise: Die exotischsten und energiereichsten astrophysikalischen Umgebungen. Dazu zählen aktive Galaxien mit sehr massereichen schwarzen Löchern oder unglaublich dichte Pulsare, das sind die rotierenden Überreste explodierter Sterne.

Doch am 7. März markierte eine mächtige Sonnenfackel aus einer Serie aktueller Sonnenausbrüche den Gammastrahlenhimmel. Sie erreichte die ein-milliardenfache Energie von Photonen im sichtbaren Licht.

Die beiden Bildfelder zeigen die Intensität der Sonnenfackel auf Bildern des ganzen Himmels. Sie wurden vom Gammastrahlenteleskop Fermi in der Erdumlaufbahn aufgenommen. Am 6. März war die Sonne wie an den meisten anderen Tagen für Fermis Bilddetektoren fast unsichtbar. Doch beim Ausbruch der energiereichen Fackel der Klasse X wurde sie im Gammastrahlenlicht fast 100-mal heller als sogar der Vela-Pulsar.

Inzwischen verblasste die Sonne aus Fermis Sicht wieder. Wahrscheinlich leuchtet sie am Gammastrahlenhimmel wieder hell auf, wenn der Sonnenfleckenzyklus sein Maximum erreicht.

Zur Originalseite

Im Nachleuchten festgehalten

Links ist ein Gammastrahlenblitz, der mit einem Spektrum markiert ist. Von dem Blitz geht  diagonal nach oben ein Strahl aus, der durch zwei Galaxien verläuft. Hinter jeder Galaxie ist ein weiteres Spektrum angebracht.

Illustrationscredit: ESO, L. Calçada; Forschungsteam: Sandra Savaglio (MPE) et al.

Diese künstlerische Darstellung zeigt zwei ferne Galaxien im Nachleuchten von GRB090323. Die Galaxien entstanden etwa 2 Milliarden Jahre nach dem Urknall. GRB090323 war ein Gammastrahlenblitz, sein Licht durchquerte fast das ganze Universum.

Der Ausbruch wurde im März 2009 vom Gammastrahlen-Weltraumteleskop Fermi entdeckt. Der Gammablitz strahlte durch seine Heimatgalaxie und eine weitere Galaxie in der Nähe. Diese Anordnung wurde aus dem Spektrum des Nachleuchtens geschlossen.

Das Nachleuchten des Blitzes verblasst langsam. Das Spektrum des Nachleuchtens wurde mit einer Einheit des Very Large Telescope (VLT) der Europäischen Südsternwarte beobachtet. Es lieferte ein überraschendes Ergebnis, nämlich dass die fernen Galaxien mehr schwere Elemente enthalten als die Sonne. Sie weisen die höchste Anreicherung an schweren Elementen auf, die je im frühen Universum beobachtet wurde.

Schwere Elemente reichern ältere Galaxien im lokalen Universum an. Sie sind in früheren Sterngenerationen entstanden. Somit haben diese jungen Galaxien im Vergleich zu unserer Milchstraße eine ungeheure Sternbildungsrate und chemische Entwicklung durchlaufen.

Der Ort des Ausbruchs liegt in der Illustration links. Das Licht wandert vom Ausbruch aus durch die Galaxien rechts daneben. Dunkle Absorptionslinien im Spektrum des Nachleuchtens zeigen die Elemente in den Galaxien. Diese Spektren sind als Einschübe dargestellt. Sternforschende auf dem Planeten Erde sind etwa 12 Milliarden Lichtjahre außerhalb des rechten Bildrandes.

Zur Originalseite

Ein unerwarteter Blitz im Krebsnebel

Auf zwei Bildfeldern sind je zwei rot umrandete helle Lichtquellen zu sehen. Die obere ist der Krebsnebel, er leuchtet auf dem rechten Bild vom April 2011 hell auf.

Credit: NASA, DOE, Fermi LAT, R. Buehler (SLAC, KIPAC)

Beschreibung: Warum blitzt der Krebsnebel auf? Niemand weiß das genau. Das ungewöhnliche Verhalten wurde im Lauf der letzten paar Jahre entdeckt. Es tritt anscheinend nur in sehr energiereichem Licht auf: im Spektrum von Gammastrahlen.

Vor erst einem Monat zeigten Beobachtungen des Krebsnebels mit dem Gammastrahlenteleskop Fermi ein unerwartetes Aufleuchten im Licht von Gammastrahlen. Dabei erreichte der Nebel etwa das Fünffache seiner üblichen Helligkeit in diesem Spektralbereich. Nach nur wenigen Tagen verblasste er wieder.

Üblicherweise ist die betroffene Region umso kleiner, je schneller die Veränderung geschieht. Das ist vielleicht ein Hinweis, dass der Krebspulsar am Geschehen beteiligt ist. Der mächtige Pulsar im Zentrum des Nebels ist ein kompakter Neutronenstern, der 30 Mal pro Sekunde rotiert.

Die Überlegungen richten sich besonders auf Veränderungen des Magnetfeldes, das vermutlich den mächtigen Pulsar umgibt. Rasche Veränderungen im Magnetfeld könnten zu Wellen rasch beschleunigter Elektronen führen, welche die Blitze abstrahlen könnten, möglicherweise auf ähnlichen Wegen wie unsere Sonne.

Dieses Bild zeigt, wie der Krebsnebel normalerweise im Vergleich zum Geminga-Pulsar im Gammastrahlenlicht aussieht, und wie er aussah, als er heller wurde.

Zur Originalseite

Riesige Gammastrahlenblasen um die Milchstraße gefunden

Eine ovale Fläche auf schwarzem Hintergrund ist rot und blau gefleckt, Waagrecht in der Mitte sind auch weiße und schwarze Flecken. Text oben: Fermi data reveal giant gamma-ray bubbles

Credit: NASA, DOE, Fermi-Gammastrahlen-Weltraumteleskop, LAT-Detektor, D. Finkbeiner et al.

Beschreibung: Wusstet ihr, dass sich in unserer Galaxis, der Milchstraße, riesige Blasen befinden, die Gammastrahlen aus der Richtung des galaktischen Zentrums aussenden? Nein? Das wusste auch sonst niemand. Im Lauf der letzten zwei Jahre wurden die Daten des Satelliten Fermi im Erdorbit immer schärfer, und damit wurde eine große, ungewöhnliche Struktur in der Richtung unseres galaktischen Zentrums immer deutlicher erkennbar.

Die beiden Blasen sind zusammen als das rot und weiß gefleckte Oval erkennbar, das die Mitte dieses gestern veröffentlichten Ganzhimmelsbildes umgibt. Die Ebene unserer Galaxis verläuft waagrecht in der Bildmitte. Wenn man annimmt, dass die Blasen aus dem galaktischen Zentrum stammen, sind sie riesig – von der Größe her konkurrieren sie mit der ganzen Galaxis, sie messen von oben bis unten etwa 50.000 Lichtjahre.

Schon auf früheren Ganzhimmelskarten gab im Radio-, Mikrowellen– und Röntgenbereich Hinweise auf die Blasen. Der Ursprung der Blasen ist derzeit unbekannt, wird jedoch voraussichtlich in den kommenden Jahren erforscht.

Zur Originalseite