Endlich GLAST

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit:  NASA, DOE, Arbeitsgemeinschaft Gammastrahlen-Weltraumteleskop Fermi

Beschreibung: Diese Delta-II-Rakete, die vor langer Zeit von einem sehr nahen Planeten durch eine wogende Rauchwolke aufstieg, verließ am 11. Juni 2008 um 12:05 Uhr EDT die Startrampe 17-B der Luftwaffenstation Cape Canaveral. Gemütlich in der Ladebucht lag GLAST, das Gammastrahlen-Großflächen-Weltraumteleskop.

GLASTs Detektortechnologie wurde für den Einsatz in terrestrischen Teilchenbeschleunigern entwickelt. Daher kann GLAST im Orbit Gammastrahlen von extremen Umgebungen über der Erde und im fernen Universum aufspüren, darunter in sehr massereichen Schwarzen Löchern in den Zentren ferner aktiver Galaxien und die Quellen mächtiger Gammastrahlenausbrüche. Diese eindrucksvollen kosmischen Beschleuniger erreichen Energien, die in erdgebundenen Laboren nicht möglich sind.

Seine Bezeichnung lautet nun Gammastrahlen-Weltraumteleskop Fermi. Am 10. Jahrestag seines Starts mögen die Fermi-Wissenschaftsendspiele beginnen.

Zur Originalseite

Fermi wissenschaftliche Stichwahl

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Das Gammastrahlenteleskop Fermi der NASA wurde am 11. Juni 2008 in die Umlaufbahn gebracht. Seine Instrumente erkennen Gammastrahlen – diese sind Licht, das Tausende bis Hunderte Milliarden Mal energiereicher ist als das, was wir mit unseren Augen sehen.

Während der letzten zehn Jahre führte Fermis energiereiche Forschungsreise zu einer Fülle erstaunlicher Entdeckungen, von extremen Umgebungen über unserem schönen Planeten bis hin ins ferne Universum. Nun können Sie Fermis bisher bestes Ergebnis wählen.

Zu Fermis 10. Jahrestag wurden Bilder, welche 16 wissenschaftliche Ergebnisse darstellen, ausgewählt und zu Gruppen angeordnet. Folgen Sie diesem Link und wählen Sie in der ersten Runde aus jedem Paar Ihre Favoriten. Alle zwei Wochen findet die Wahl der nächsten Runde statt – kommen Sie wieder! Der Sieger des Fermi-Finales wird am 6. August veröffentlicht – zum zehnjährigen Jubiläum der ersten wissenschaftlichen Daten von Fermi.

Zur Originalseite

GW170817: Spektakuläre Verschmelzung in mehreren Wellenlängen entdeckt

Erklärungsvideo-Credit: Bildgebungslabor der NASA

Bei einer explosiven Verschmelzung wurden erstmals kurz nacheinander Gravitationswellen und elektromagnetische Strahlung gemessen. Die Daten des Ausbruchs passen zur finalen Spirale, auf der zwei Neutronensterne in einem Binärsystem verschmelzen. Der explosionsartige Vorgang wurde am 17. August in der elliptischen Galaxie NGC 4993 beobachtet. Sie ist nur 130 Millionen Lichtjahre entfernt.

Erst wurden die Gravitationswellen beobachtet. Dabei kamen erstmals die Observatorien LIGO und Virgo auf der Erde zusammen zum Einsatz. Sekunden später maß das Fermi-Teleskop im Orbit Gammastrahlen. Ein paar Stunden später beobachteten Hubble und andere Observatorien Licht im ganzen elektromagnetischen Spektrum.

Dieses Erklärvideo zeigt den wahrscheinlichen Ablauf. Heiße Neutronensterne nähern sich auf spiralförmigen Bahnen. Dabei senden sie Gravitationswellen aus. Beim Verschmelzen bricht ein mächtiger Strahl hervor. Er stößt den kurzen Gammablitz aus. Dann werden Wolken ausgeworfen. Später folgt eine optische Art von Supernovae, die als Kilonova bezeichnet wird.

Erstmals passen die Entdeckungen zusammen. Sie bestätigen, dass LIGO-Ereignisse mit kurzen Gammablitzen einhergehen. Mächtige Verschmelzungen von Neutronensternen versorgten vermutlich das Universum mit vielen schweren Atomkernen. Dazu gehört Jod, das für Leben notwendig ist. Uran und Plutonium brauchen wir für Kernspaltung. Vielleicht habt ihr ein Andenken solcher Explosionen. Sie sind vermutlich auch die ursprüngliche Quelle von Gold.

Artikel von LIGO und LCO

Zur Originalseite

Holometer: Ein Mikroskop in Zeit und Raum

Das Bild zeigt einen Spiegel des Holometers, das sich am Fermi National Accelerator Laboratory (Fermilab) befindet. Es soll herausfinden, ob es einen Grundtyp holografischer Schwankungen gibt.

Bildcredit: C. Hogan, Fermilab

Wie stark unterscheiden sich Raum und Zeit in einem sehr kleinen Maßstab? Im Bereich der winzigen Planck-Einheiten treten Quanteneffekte in den Vordergrund, die normalerweise nicht wahrnehmbar sind. Um diesen ungewohnten Bereich zu erforschen, nahm ein neu entwickeltes Instrument seinen Betrieb auf. Es wird als Holometer bezeichnet und befindet sich am Fermi National Accelerator Laboratory (Fermilab). Das Fermilab befindet sich in der Nähe von Chicago im US-Bundesstaat Illinois.

Das Instrument soll herausfinden, ob leichte, gleichzeitige Erschütterungen eines Spiegels in zwei Richtungen einen Grundtyp holografischer Schwankungen zutage fördern, der immer einen Mindestwert übersteigt. Oben seht ihr einen Endspiegel des Holometer-Prototyps.

Die Entdeckung eines holografischen Rauschens wäre sicherlich bahnbrechend. Doch die Abhängigkeit solcher Schwankungen von einer spezifischen Laborlängenskala würde manche Leute, die sich für die Raumzeit interessieren, überraschen.

Ein Grund dafür ist die Lorentz-Invarianz, die in Einsteins spezieller Relativitätstheorie postuliert wurde. Sie besagt, dass alle Längenskalen relativ zu einem bewegten Beobachter verkürzt erscheinen, sogar die winzige Planckskala. Das Experiment ist einzigartig. Viele warten neugierig, was dabei herauskommt.

Zur Originalseite

Dunkle Materie im Zentrum der Galaxis?

Das linke der beiden Bilder ist ein Rohbild vom galaktischen Zentrum. Rechts wurden Gammaquellen abgezogen. Dabei blieb ein Überschuss. In den Bildmitten sind bunte Kerne, die von lila und blauen Nebeln umgeben sind.

Bildcredit: T. Daylan et al., Weltraumteleskop Fermi, NASA

Wie entstehen Gammastrahlen im Zentrum der Milchstraße? Die Spannung steigt. Eine Erklärung könnte lauten: durch schwer fassbare Dunkle Materie. In den letzten Jahren kartierte das Gammastrahlen-Weltraumteleskop Fermi das Zentrum der Galaxis in Gammastrahlen. Wiederholte detailreiche Analysen zeigen: Der Bereich um das galaktische Zentrum wirkt zu hell, als dass man es mit bekannten Gammastrahlen-Quellen erklären könnte.

Das Rohbild links oben zeigt die galaktische Zentralregion in Gammastrahlen. Im rechten Bild wurden alle bekannten Quellen abgezogen. Dabei blieb ein unerwarteter Überschuss. Ein faszinierendes hypothetisches Modell könnte das Ausmaß erklären. Es enthält eine Art Dunkler Materie, die als WIMPs bekannt sind. Es sind Teilchen, die mit sich selbst kollidieren und dabei die Gammastrahlen erzeugen könnten, die beobachtet wurden.

Diese Hypothese ist allerdings umstritten. Es gibt Diskussionen und detailreichere Untersuchungen. Die Natur Dunkler Materie zu erkennen ist eine der großen Aufgaben moderner Wissenschaft. Denn diese ungewöhnliche Art kosmologisch allgegenwärtiger Materie macht sich nur durch Gravitation bemerkbar.

Astrophysik: 750+ Codes in der Astrophysik-Quellcode-Bibliothek

Zur Originalseite

Gammastrahlen-Erde und -Himmel

Der gelbe Rand ist die helle Gammastrahlung von der Erde. Diagonal in der Mitte verläuft die Milchstraße. Das Bild ist eine Kleiner-Planet-Projektion aus Daten des Gammastrahlenteleskops Fermi im Weltraum.

Bildcredit: International Fermi Large Area Telescope Collaboration, NASA, DOE

Gammastrahlen sind die energiereichste Form von Licht. Für ein Gammastrahlenteleskop im Erdorbit ist die Erde die hellste Lichtquelle.

Die kosmische Strahlung aus dem All besteht aus Teilchen. Wenn energiereiche Teilchen auf die Atmosphäre prallen, verströmt die Erde Gammastrahlen. Diese Wechselwirkung schützt die Erdoberfläche vor gefährlicher Strahlung.

Diese ungewöhnliche Ansicht von Erde und Himmel entstand mit dem Large Area Telescope des Gammastrahlenobservatoriums Fermi in der Umlaufbahn. Sie wird von Gammastrahlen bestimmt. Die Beobachtungsdaten für dieses Bild wurden aufgenommen, wenn das Zentrum unserer Milchstraße nahe am Zenit stand, also direkt über dem Satelliten Fermi. Im Bild befindet sich der Zenit in der Bildmitte.

Die Erde und der Nadir befinden sich genau unter dem Satelliten. Sie verlaufen am Rand des Bildes. So entstand eine Projektion der Erde und des ganzen Himmels aus Fermis Blickwinkel in der Umlaufbahn.

Das Farbschema hat eine logarithmische Skala. Gammastrahlen mit geringer Intensität wird in Blau gezeigt. Strahlung mit hoher Intensität ist in gelblichen Farbtönen abgebildet. Das hellere Gammastrahlenleuchten unseres Planeten flutet den Rand des Bildfeldes. Der intensiv gelbe Ring zeigt den Erdrand. Gammastrahlenquellen am Himmel in der relativ blassen Milchstraße sind diagonal über die Mitte verteilt.

Fermi wurde am 11. Juni 2008 gestartet, um das energiereiche Universum zu erforschen. Diese Woche feierte Fermi den 2000. Tag im niedrigen Erdorbit.

Zur Originalseite

Fermi-Epizyklen: Der Pfad des Vela-Pulsars

Ein Kreus auf dunklem Hintergrund ist von vielen hellen Linien überzogen, die einander überlagern. Dabei entsteht eine rosettenartige Form.

Bildcredit: NASA, DOE, Internationale Fermi LAT-Zusammenarbeit

Das Gammastrahlen-Weltraumteleskop Fermi erforscht den Kosmos in extremen Energiebereichen. Es umrundet alle 95 Minuten den Planeten Erde. Dabei schwankt es absichtlich auf wechselnden Umlaufbahnen nach Norden und Süden, um mit seinem Large Area Telescope (LAT) den Himmel zu vermessen. Die Raumsonde rotiert auch. Das sorgt dafür, dass die Solarpaneele, welche die Energie liefern, auf die Sonne gerichtet bleiben. Die Achse ihrer Bahn präzediert wie ein Kreisel. Die Rotationsachse vollendet alle 54 Tage einen Umlauf.

Diese vielen Bewegungszyklen führen dazu, dass die Pfade von Gammastrahlenquellen aus Sicht der Raumsonde komplexe Muster zeichnen. Diese Darstellung veranschaulicht das, sie zeigt den hypothetischen Pfad des Vela-Pulsars. Die Darstellung ist auf das Bildfeld des LAT-Instruments zentriert, sie zeigt ein 180 Grad breites Bildfeld und folgte der Position des Vela-Pulsars von August 2008 bis August 2010. Die helle Konzentration an Linien um die Mitte zeigt, dass sich der Vela-Pulsar meistens in der sensitiven Region des LAT-Detektors befand.

Der Vela-Pulsar entstand bei der finalen Explosion eines massereichen Sterns in der Milchstraße. Er ist ein Neutronenstern, der 11 Mal pro Sekunde rotiert. Im Spektrum der Gammastrahlen ist er die hellste und beständige Quelle am Himmel.

Zur Originalseite

Sonnenfackel am Gammastrahlenhimmel

Zwei Ovale zeigen den Himmel in Gammastrahlen. Im oberen Oval ist das hellste Licht der Vela-Pulsar, im unteren Oval vom 7. März leuchtet die Sonne um ein Vielfaches heller als alles andere.

Bildcredit: NASA, DOE, Internationale Fermi LAT- Arbeitsgemeinschaft

Was leuchtet am Gammastrahlenhimmel? Die Antwort lautet normalerweise: Die exotischsten und energiereichsten astrophysikalischen Umgebungen. Dazu zählen aktive Galaxien mit sehr massereichen schwarzen Löchern oder unglaublich dichte Pulsare, das sind die rotierenden Überreste explodierter Sterne.

Doch am 7. März markierte eine mächtige Sonnenfackel aus einer Serie aktueller Sonnenausbrüche den Gammastrahlenhimmel. Sie erreichte die ein-milliardenfache Energie von Photonen im sichtbaren Licht.

Die beiden Bildfelder zeigen die Intensität der Sonnenfackel auf Bildern des ganzen Himmels. Sie wurden vom Gammastrahlenteleskop Fermi in der Erdumlaufbahn aufgenommen. Am 6. März war die Sonne wie an den meisten anderen Tagen für Fermis Bilddetektoren fast unsichtbar. Doch beim Ausbruch der energiereichen Fackel der Klasse X wurde sie im Gammastrahlenlicht fast 100-mal heller als sogar der Vela-Pulsar.

Inzwischen verblasste die Sonne aus Fermis Sicht wieder. Wahrscheinlich leuchtet sie am Gammastrahlenhimmel wieder hell auf, wenn der Sonnenfleckenzyklus sein Maximum erreicht.

Zur Originalseite