Fermis zwölfjährige Gammastrahlenkarte des ganzen Himmels

Die abgebildete Karte des ganzen Himmels ist tiefblau gefärbt, waagrecht verläuft ein rotes Band, das an einigen Stellen gelb ist. Über den Himmel sind wenige helle Stellen verteilt.

Bildcredit: NASA, DOE, Fermi LAT-Arbeitsgemeinschaft; Text: Barb Mattson (U. Maryland, NASA’s GSFC)

Vergesst den Röntgenblick – stellt euch vor, was ihr mit dem Gammastrahlenblick sehen könntet! Diese Karte des ganzen Himmels zeigt, wie sich das Universum dem Fermi Gamma-ray Space Telescope der NASA präsentiert.

Fermi sieht Licht mit Energien, die ungefähr eine Milliarde Mal so stark sind, wie es das menschliche Auge sehen kann. Die Karte kombiniert 12 Jahre Fermi-Beobachtungen. Die Farben stehen für die Helligkeiten der Quellen der Gammastrahlung. Stärkere Quellen erscheinen in helleren Farben.

Der auffällige Streifen in der Mitte ist die Zentralebene unserer Milchstraße. Die meisten roten und gelben Punkte über und unter der Ebene der Milchstraße sind weit entfernte Galaxien. Die meisten Punkte in der Ebene sind nahe Pulsare.

Der blaue Hintergrund, der das Bild ausfüllt, ist das diffuse Leuchten von Gammastrahlung aus weit entfernten Quellen. Sie sind zu schwach, um sie voneinander zu unterscheiden. Manche Quellen von Gammastrahlung können nicht identifiziert werden und bleiben somit Forschungsobjekte – derzeit weiß niemand, was sie sind.

Zur Originalseite

GRB 221009A

Das Bild zeigt den Gammablitz GRB 221009A, der mit dem Weltraum-Gammastrahlenteleskop Fermi detektiert wurde.

Bildcredit: NASA, DOE, Fermi-LAT-Arbeitsgemeinschaft

Der Gammablitz GRB 221009A kündigt wahrscheinlich die Entstehung eines neuen Schwarzen Lochs an, das vor langer Zeit im fernen Universum im Kern eines kollabierenden Sterns entstanden ist. Diese Animation wurde aus Daten des Fermi-Gammastrahlen-Weltraumteleskops erstellt, sie zeigt die extrem starke Explosion.

Fermi detektierte die Daten in Gammastrahlenenergie und spürte dabei Photonen mit einer Energie von mehr als 100 Millionen Elektronenvolt auf. Im Vergleich dazu haben Photonen in sichtbarem Licht eine Energie von etwa 2 Elektronenvolt. Links verläuft ein stetiges, energiereiches Gammastrahlenleuchten aus der Ebene unserer Milchstraße quer durch das 20 Grad große Bild. In der Mitte erscheint der flüchtige Gammablitz GRB 221009A und verblasst dann wieder. GRB 221009A war einer der hellsten Gammastrahlenausbrüche, die je detektiert wurden. Was Gammablitze betrifft, ist er relativ nahe, doch mit einer Distanz von etwa 2 Milliarden Lichtjahren ist er immer noch weit entfernt.

Fermis Large Area Telescope (LAT) im niedrigen Erdorbit erfasste die Gammastrahlen-Photonen des Ausbruchs in einem Zeitraum von mehr als 10 Stunden, als die energiereiche Strahlung von GRB 221009A letzten Sonntag, dem 9. Oktober, über den Planeten Erde hinwegfegte.

Zur Originalseite

Supernova-Kanone stößt Pulsar J0002 aus

Die Illustration zeigt einen Supernova-Überrest mit einer Linie, die sich nach rechts unten erstreckt und die Spur eines Neutronensterns darstellt.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Kanadische Vermessung der galaktischen Ebene (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Was kann einen Neutronenstern wie eine Kanonenkugel hinausschießen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebeligen Überrest CTB 1 erzeugte, nicht nur einen massereichen Stern, sondern schleuderte außerdem den neu entstandenen Neutronensternkern – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7 Mal pro Sekunde. Er wurde mithilfe der zum Download angebotenen Software Einstein@Home entdeckt. Diese Software durchsucht die Daten des Gammastrahlenobservatoriums Fermi der NASA im Weltraum.

Der Pulsar PSR J0002+6216 (kurz J0002) rast mit mehr als 1000 km pro Sekunde durchs All. Er hat den Supernovaüberrest CTB 1 bereits hinter sich und ist sogar schnell genug, um die Galaxis zu verlassen. Auf diesem Bild ist die Spur des Pulsars gut erkennbar, sie führt vom Supernovaüberrest nach links unten.

Das Bild ist eine Kombination aus Radiobildern der Radioobservatorien VLA und DRAO sowie Archivdaten des Infrarot-Weltraumobservatoriums IRAS der NASA. Wir wissen, dass Supernovae wie Kanonen agieren können, und auch, dass sich Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das zustande bringen.

Zur Originalseite

Supernovakanone stößt den Pulsar J0002 aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Canadian Galactic Plane Survey (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Beschreibung: Was kann einen Neutronenstern wie eine Kanonenkugel ausstoßen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebelartigen Überrest CTB 1 erzeugte, einen massereichen Stern, doch zusätzlich schoss sie den neu entstandenen Kern eines Neutronensterns – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7-mal pro Sekunde um seine Achse. Er wurde mithilfe der Software Einstein@Home entdeckt, die  Daten des Gammastrahlen-Weltraumteleskops Fermi der NASA durchsucht. Der Pulsar PSR J0002+6216 (kurz J0002) rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde dahin. Er hat den Supernovaüberrest CTB 1 bereits verlassen und ist schnell genug, um aus unserer Galaxis hinauszukommen. Die hier abgebildete Spur des Pulsars entspringt – wie man sieht – links unter dem Supernovaüberrest.

Dieses Bild ist eine Kombination aus Radiobildern des VLA– und des DRAO-Radioobservatoriums sowie Daten, die mit dem Infrarotobservatorium IRAS der NASA gewonnen wurden. Es ist bekannt, dass Supernovae sich wie Geschütze und Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das anstellen.

Zur Originalseite

Röntgen-Superblasen in der Galaxie NGC 3079

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: NASA, CXC, U. Michigan, J-T Li et al.; Optisch: NASA, STScI

Beschreibung: Wie entstanden diese gewaltigen galaktischen Superblasen? Zwei dieser ungewöhnlichen Blasen, von denen jede Tausende Lichtjahre misst, wurden kürzlich nahe dem Zentrum der Spiralgalaxie NGC 3079 entdeckt. Die Riesenblasen – rechts im Bild in Violett abgebildet – sind so heiß, dass sie Röntgenlicht abstrahlen, das vom Röntgenobservatorium Chandra der NASA in der Erdumlaufbahn detektiert wurde.

Da die Blasen über das Zentrum von NGC 3079 reichen, lautet eine führende Hypothese, dass sie irgendwie durch eine Wechselwirkung des zentralen, sehr massereichen Schwarzen Lochs mit dem umgebenden Gas erzeugt wurden. Andernfalls könnten die Riesenblasen vorwiegend durch die energiereichen Winde vieler junger, heißer Sternen in der Nähe des Galaxienzentrums entstanden sein. Das einzige ähnliche Phänomen, das wir kennen, sind Gammastrahlen emittierende Fermi-Blasen, die vom Zentrum unserer Milchstraße ausströmen, und die vor 10 Jahren auf Bildern des NASA-Satelliten Fermi entdeckt wurden.

Die Erforschung der NGC 3079-Superblasen wird sicherlich fortgesetzt, aber auch die Suche nach energiereichen Riesenblasen in anderen Galaxien.

Zur Originalseite

Live: Kosmische Strahlen aus Minnesota

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Fermilab, NuMI, NOvA Collaboration

Beschreibung: Kosmische Strahlung aus dem Weltraum rast jede Sekunde durch unsere Körper. Normalerweise schadet sie nicht. Dieses Bild zeigt einige dieser schnellen Teilchen als Streifen in Fermilabs NOvA Far Detector in Ash River (Minnesota, USA). Das Bild wird alle 15 Sekunden aktualisiert, doch es visualisiert nur kosmische Strahlen, die in einem (veränderlichen) kleinen Bruchteil dieser Zeit auftraten, und es zeigt hauptsächlich eine Teilchenart: Myonen.

Die Hauptaufgabe des NOvA Far Detector  besteht jedoch nicht darin, kosmische Strahlung zu messen, sondern einen Strahl Neutrinos, der in einer Entfernung von 810 Kilometern am Fermilab in Chicago (Illinois, USA) von NuMI durch die Erde geschossen wird. Es werden jedoch nur wenige Neutrino-Ereignisse pro Woche von NOvA erwartet. Das NuMINOvA-Experiment ermöglicht der Menschheit, die Nature von Neutrinos besser zu erforschen, zum Beispiel wie häufig sie auf ihrer Reise ihre Art wechseln.

Kosmische Strahlung wurde erst vor etwa 100 Jahren entdeckt und kann nicht nur das Gedächtnis eines Computers verändern, sondern hat vermutlich auch DNAMutationen hervorgerufen, die schließlich zum Menschen führten.

Hinweis: Die automatische Aktualisierung des Bildes konnte nicht übernommen werden. Bei manuellen Browser-Aktualisierungen werden neue Aufnahmen gezeigt.

Zur Originalseite

Fermis Wissenschaftsfinalisten

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Mit der Fermi-Wissenschaftsstichwahl feiern wir 10 Jahre Forschung im Hochenergieuniversum mit dem Gammastrahlen-Weltraumteleskop Fermi. Diese beiden Finalisten haben alle früheren Abstimmungsrunden im Wettbewerb gewonnen und treten als letzte gegeneinander an.

Die beiden digitalen Illustrationen aus einer Liste mit Fermis 16 interessantesten Entdeckungen sind die Spitzenkandidaten des Wettbewerbs, sie setzten sich im Semifinale gegen den 12. Kandidaten „Neue Hinweise auf Dunkle Materie“ und den 14. „Sternbeben in einem Magnetarsturm“ durch. Links sind neu entdeckte, unvorhergesagte Gammastrahlenblasen über und unter der Ebene unserer Milchstraße mit einem Durchmesser von 25.000 Lichtjahren abgebildet. Rechts kollidieren gewaltsam verschmelzende Neutronensterne des ersten Gravitationswellenereignisses, das je durch Gammastrahlen entdeckt wurde.

Wählen Sie eins der Bilder und geben Sie hier Ihre Stimme ab, um das beliebteste wissenschaftliche Ergebnis aus Fermis erster Dekade zu wählen.

Zur Originalseite

Neutrino trifft zeitgleich mit fernem Blazarstrahl ein

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: DESY, Labor für Wissenschaftskommunikation

Beschreibung: Mit Geräten, die unter dem Südpol der Erde tief im Eis eingefroren sind, hat die Menschheit anscheinend ein Neutrino aus dem fernen Universum entdeckt. Falls das bestätigt wird, markiert es den ersten eindeutigen Nachweis kosmologisch weit entfernter Neutrinos und den Beginn eines beobachteten Zusammenhangs zwischen energiereichen Neutrinos und kosmischer Strahlung, die durch mächtige Ströme aus aufflackernden Quasaren (Blazare) erzeugt werden.

Nachdem der antarktische IceCube-Detektor im September 2017 ein energiereiches Neutrino gemessen hatte, begannen viele der weltweit größten Observatorien mit der Suche nach seinem Gegenstück im sichtbaren Licht. Und sie fanden es. Ein solches Gegenstück wurde unter anderem vom Weltraumobservatorium Fermi der NASA ermittelt, welches herausfand, dass der Gammastrahlenblazar TXS 0506+056 in der richtigen Richtung stand und die Gammastrahlen eines Blitzes fast exakt zeitgleich mit dem Neutrino eintrafen. Obwohl diese und weitere Übereinstimmungen von Position und Zeit statistisch stark sind, warten Astronomen weitere ähnliche Zusammenhänge zwischen Neutrinos und Blazar-Licht, um ganz sicher zu gehen.

Diese künstlerische Darstellung zeigt einen Teilchenstrahl, der von einem Schwarzen Loch im Zentrum eines Blazars ausströmt.

Zur Originalseite