Der erdgroße Exoplanet LHS 475 b

Diese Illustration einer künstlichen Intelligenz zeigt eine mögliche Landschaft des Explaneten LHS 475 b, der eine ähnliche Masse besitzt wie die Erde. Über einer von Lava gefluteten Landschaft geht der rote Zentralstern des Planeten auf.

Illustrationscredit: DeepAI’s Fantasy World Generator

Was würdet ihr vielleicht auf dem Exoplaneten LHS 475 b sehen? Niemand weiß das, aber hier ist eine interessante Vermutung dargestellt, die von einer künstlichen Intelligenz (KI) auf der Erde erstellt wurde.

Daten des Satelliten TESS im Erdorbit lieferten Hinweise auf die Existenz des Exoplaneten, diese wurde aber erst dieses Jahr vom James-Webb-Weltraumteleskop im erdnahen Sonnenorbit bestätigt und weiter untersucht. Sicher ist, dass die Masse von LHS 475 b der Masse unserer Erde sehr ähnlich ist, und dass der Exoplanet sehr nahe um einen kleinen roten Stern kreist, der etwa 40 Lichtjahre entfernt ist. Diese von einer KI generierte Illustration zeigt eine zerklüftete, erdähnliche Landschaft mit geschmolzener Lava und einem roten Zentralstern, der in der Ferne aufgeht. Die Daten von Webb zeigen jedoch nicht, ob LHS 475 b eine Atmosphäre besitzt.

Eines von Webbs wissenschaftlichen Ziele ist, frühere Entdeckungen ferner Exoplaneten zu überprüfen, um ihr Potenzial für die Entwicklung von Leben besser zu beurteilen. (Hinweis des Herausgebers: Dieser Text wurde ohne die Hilfe einer KI verfasst.)

Komet ZTF – Galerie: Interessante APOD-Einreichungen
Zur Originalseite

Mond über Makemake

Der Zwergplanet Makemake am Rand des Sonnensystems besitzt einen Mond, beide sind auf dieser Illustration dargestellt.

Illustrationscredit: Alex H. Parker (Südwest-Forschungsinstitut)

Makemake (klingt wie [ˈmakeˈmake]) ist der zweithellste Zwergplanet im Kuipergürtel und hat einen Mond mit der Bezeichnung MK2. Makemakes Mond reflektiert Sonnenlicht mit einer kohlschwarzen Oberfläche, etwa 1300 Mal dunkler als sein Heimatkörper. Dennoch wurde er 2016 bei Beobachtungen mit dem Weltraumteleskop Hubble bei der Suche nach blassen Begleitern erspäht, und zwar mit derselben Technik, mit der man nach kleinen Begleitern von Pluto suchte.

Genauso wie bei Pluto und seinen Begleitern werden bei weiteren Beobachtungen von Makemake und dem umkreisenden Mond die Masse des Systems und seine Dichte vermessen. Das führt zu einem umfassenderen Verständnis der fernen Welten. MK2 ist etwa 160 Kilometer groß. Makemakes Durchmesser beträgt im Vergleich dazu 1400 Kilometer.

Diese Illustration zeigt die relative Größe und den Kontrast von MK2. Die imaginäre Szene eine unerforschte Grenze des Sonnensystems und blickt aus der Perspektive einer Raumsonde zurück, wo eine trübe Sonne in der Milchstraße leuchtet. Die Sonne ist mehr als 50 Mal weiter von Makemake entfernt als vom Planeten Erde.

Zur Originalseite

4000 Exoplaneten

Videocredit: SYSTEM Sounds (M. Russo, A. Santaguida); Daten: NASA-Exoplanetenarchiv

Mehr als 4000 Planeten außerhalb unseres Sonnensystems sind inzwischen bekannt, sie werden als Exoplaneten bezeichnet. Dieser Meilenstein wurde letzte Woche überschritten, wie das Exoplanetenarchiv der NASA berichtete. Das Video zeigt diese Exoplaneten in Licht und Ton, chronologisch beginnend mit der ersten bestätigten Entdeckung 1992 bis ins Jahr 2019.

Anfangs ist der gesamte Nachthimmel komprimiert dargestellt. Das Zentralband unserer Milchstraße bildet ein riesiges U. Exoplaneten, die durch leichtes Schwanken der Farben ihres Zentralsterns (Radialgeschwindigkeit) entdeckt wurden, erscheinen in rosa, während Planeten, die durch eine leichte Absenkung der Helligkeit ihres Zentralsterns (Transit) gefunden wurden, sind violett abgebildet. Weiters wurden direkt abgebildete Exoplaneten orange dargestellt. Exoplaneten, die durch gravitative Vergrößerung (Mikrolinseneffekt) des Lichts eines Hintergrundsterns entdeckt wurden, sind in Grün gezeigt.

Je schneller ein Planet um seinen Herkunftsstern kreist, desto höher wird der begleitende Ton abgespielt. Der ausgediente Satellit Kepler entdeckte etwa die Hälfte der ersten 4000 Exoplaneten in nur einer kleinen Region am Himmel, während die Mission TESS auf bestem Weg ist, noch mehr Exoplaneten zu finden, die um die hellsten, nahe gelegenen Sterne kreisen, und zwar am ganzen Himmel verteilt.

Exoplaneten zu finden hilft der Menschheit nicht nur, das Potenzial für die Häufigkeit von Leben anderswo im Universum besser zu verstehen, sondern auch, wie unsere Erde und das Sonnensystem entstanden sind.

Zur Originalseite

Spiel: Super Planet Crash

Bildcredit und Lizenz: Stefano Meschiari (U. Texas at Austin) und das SAVE/Point-Team

Schafft ihr ein Planetensystem, das 1000 Jahre übersteht? Mit dem Spiel Super Planet Crash könnt ihr es versuchen. Klickt einfach in die Nähe des Zentralsterns, um Planeten zu bilden – bis zu 10 sind möglich.

Links könnt ihr – nach Masse sortiert – eine Planetenart wählen: Erde, Super-Erde, Eisriese, Riesenplanet, Brauner Zwerg oder Zwergstern. Jeder Planet wird nicht nur vom zentralen, sonnenähnlichen Stern angezogen, sondern auch von anderen Planeten. Ihr bekommt Punkte, und für dichtere oder bewohnbare Systeme gibt es einen Bonus. Das Spiel endet nach 1000 Jahren oder wenn ein Planet durch die Gravitation hinausgeschleudert wird.

In den letzten Jahren wurden viele exoplanetare Systeme entdeckt, und Super Planet Crash zeigt, warum einige davon stabil sind. Wenn ihr einige Male Super Planet Crash spielt, könnt ihr euch wahrscheinlich vorstellen, warum vermutet wird, dass unser Sonnensystem während seiner Entstehung Planeten verloren hat.

Zur Originalseite

50 Lichtjahre bis 51 Pegasi

Das Sternbild Pegasus hinter der Kuppel des Haute-Provence-Observatoriums, wo Michel Mayor und Didier Queloz 1995 den Exoplaneten Dimidium (51 Pegasi b) entdeckten.

Bildcredit und Bildrechte: Josselin Desmars

Beschreibung: Bis zu 51 Pegasi sind es nur 50 Lichtjahre. Die Position dieses Sterns ist auf diesem Schnappschuss vom August markiert. Das Bild wurde in einer dunstigen Nacht aufgenommen, als über der Kuppel des Haute-Provence-Observatoriums in Frankreich fast nur hellere Sterne zu sehen waren.

Vor 26 Jahren veröffentlichten die Astronomen Michel Mayor und Didier Queloz im Oktober 1995 eine fundamentale Entdeckung, die sie an diesem Observatorium gemacht hatten. Mit einem präzisen Spektrographen fanden sie einen Planeten, der 51 Peg umkreist. Es war der erste bekannte Exoplanet in einem Orbit um einen sonnenähnlichen Stern.

Mayor und Queloz maßen mit dem Spektrographen die Veränderung der Radialgeschwindigkeit des Sterns, da der ihn umkreisende Planet durch den Gravitationszug ein regelmäßiges Taumeln bewirkt. Die ermittelte Masse des Planeten mit der Bezeichnung 51 Pegasi b ist mindestens halb so groß wie die von Jupiter. Seine Umlaufperiode beträgt 4,2 Tagen, somit kreist er viel enger um seinen Heimatstern als Merkur um die Sonne.

Die Entdeckung von Mayor und Queloz wurde rasch bestätigt, und sie bekamen schließlich 2019 den Physik-Nobelpreis verliehen. 51 Pegasi b gilt heute als Prototyp einer Klasse von Exoplaneten, die allgemein als Heiße Jupiter bekannt sind. 2015 erhielt er den offiziellen Namen Dimidium, die lateinische Bezeichnung für Hälfte. Seit seiner Entdeckung wurden mehr als 4000 Exoplaneten aufgespürt.

Zur Originalseite

GW Orionis: Ein Sternensystem mit geneigten Ringen


Animations- und Illustrationscredit: ESO, U. Exeter, S. Kraus et al., L. Calçada

Beschreibung: Das Dreifachsternsystem GW Orionis zeigt anscheinend, dass Planeten in mehreren Ebenen entstehen und kreisen können. Im Gegensatz dazu kreisen alle Planeten und Monde in unserem Sonnensystem in fast ein und derselben Ebene. Das bizarre System besteht aus drei markanten Sternen, einer gekrümmten Scheibe und geneigten Ringe aus Gas und Geröll im Inneren.

Diese Animation beschreibt das System GW Ori anhand von Beobachtungen der VLTs und ALMA der Europäischen Südsternwarte in Chile. Der erste Teil des anschaulichen Videos zeigt einen prächtigen Ausblick auf das ganze System aus einem fernen Orbit, der zweite Abschnitt führt uns ins Innere der geneigten Ringe, um die drei zentralen Sterne aufzulösen, die ebenfalls in diesem Orbit kreisen.

Computersimulationen lassen vermuten, dass Mehrfachsterne in Systemen wie GW Ori Scheiben in nicht ausgerichtete Ringe krümmen und aufbrechen könnten, in denen Exoplaneten entstehen.

Zur Originalseite

TYC 8998-760-1: Mehrere Planeten um einen sonnenähnlichen Stern

Das Very Large Telescope der ESO entdeckt ein Planetenpaar im Infrarotlicht um den Stern TYC 8998-760-1.

Bildcredit: ESO, A. Bohn et al.

Beschreibung: Haben andere Sterne Planeten wie unsere Sonne? Frühere Hinweise – nämlich leichte Verschiebungen im Licht eines Sterns, die durch Planeten in einer Umlaufbahn verursacht werden – zeigen, dass dem so ist. Doch nun wurde erstmals ein Planetenpaar, das um einen sonnenähnlichen Stern kreist, direkt abgebildet. Diese Exoplaneten umrunden einen Stern mit der Bezeichnung TYC 8998-760-1. Sie sind auf diesem Infrarotbild mit Pfeilen markiert.

Der 17 Millionen Jahre alte Heimatstern ist viel jünger als unsere 5 Milliarden Jahre alte Sonne. Außerdem sind die Exoplaneten massereicher und kreisen weiter von ihrem Heimatstern entfernt als ihre Entsprechungen im Sonnensystem: Jupiter und Saturn.

Die Exoplaneten wurden mit dem Very Large Telescope der ESO in Chile durch ihr Infrarotleuchten entdeckt – nachdem das Licht ihres Heimatsterns künstlich verdeckt wurde. Wenn das Teleskop und die Technologie im Lauf des nächsten Jahrzehnts verbessert werden, hofft man, auch Planeten direkt abzubilden, die mehr Ähnlichkeit mit unserer Erde aufweisen.

Expertendiskussion: Wie findet die Menschheit erstmals außerirdisches Leben?
Zur Originalseite

Das Planetensystem Kepler-90

Im Planetensystem Kepler-90 kreisen 8 Planeten um einen sonnenähnlichen Stern; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA Ames, Wendy Stenzel

Beschreibung: Haben andere Sterne Planetensysteme wie unseres? Ja – ein solches System ist Kepler-90. Der Satellit Kepler, der zwischen 2009 und 2018 im Erdorbit betrieben wurde, entdeckte und katalogisierte acht Planeten, somit besitzt Kepler-90 die gleiche Anzahl bekannter Planeten wie unser Sonnensystem.

Wie unser System besitzt Kepler-90 einen Stern der Spektralklasse G vergleichbar mit unserer Sonne, weiters Gesteinsplaneten wie unsere Erde sowie ähnlich große Planeten wie Jupiter und Saturn. Zu den Unterschieden gehört, dass alle bekannten Kepler-90-Planeten relativ nahe beieinander um den Stern kreisen – näher als die Erde um die Sonne -, weshalb sie womöglich zu heiß sind, um Leben zu entwickeln. Doch bei Beobachtungen über einen längeren Zeitraum könnten weiter außen liegende, kühlere Planeten entdeckt werden.

Kepler-90 ist ungefähr 2500 Lichtjahre entfernt. Seine scheinbare Helligkeit beträgt 14 mag, er ist mit einem mittelgroßen Teleskop im Sternbild Drache (Draco) zu sehen. 2018 startete das Weltraumteleskop TESS, das nach Exoplaneten sucht. Weitere für das nächste Jahrzehnt geplante Missionsstarts mit der Möglichkeit, Exoplaneten zu finden, sind das JWST der NASA sowie WFIRST.

Zur Originalseite