Sternfabrik Messier 17

Mitten im Bild leuchtet ein weiß-grünlicher Nebel, der von rechts aus einer Höhle aus dunklem Staub zu strömen scheint. Im Bild sind kleine Sterne verteilt.

Credit: ESO, INAF-VST, OmegaCAM; Danksagung: OmegaCen/Astro-WISE/Kapteyn-Institut

Beschreibung: Die Sternfabrik Messier 17 wird von Sternwinden und Strahlung geformt. Sie liegt etwa 5500 Lichtjahre entfernt im nebelreichen Sternbild Schütze. In dieser Entfernung ist dieses ein Grad weite Sichtfeld fast 100 Lichtjahre breit. Das Bild stammt vom neuen VLT-Durchmusterungsteleskop und der OmegaCAM der ESO.

Dieses scharfe Falschfarbenbild enthält Daten im sichtbaren und infraroten Licht. Es zeigt zarte Details der Gas- und Staubwolken in dieser Region vor der sternenreichen Kulisse der zentralen Milchstraße.

Sternenwinde und das energiereiche Licht von heißen, massereichen Sternen, die aus dem Vorrat an kosmischem Gas und Staub in M17 entstanden sind, haben langsam die übrig gebliebene interstellare Materie erodiert. Das führte zu der höhlenartigen Erscheinung und den gewellten Formen. M17 ist auch als Omeganebel oder Schwanennebel bekannt.

Zur Originalseite

Sternenstaub und Beteigeuze

Auf schwarzem Grund leuchtet ein verschwommener Nebel aus bunten Flecken, in der Mitte befindet sich ein schwarzer Kreis, in dem wiederum ein verschwommener Nebel ist.

ESO, Pierre Kervella (LESIA, Observatorium Paris) et al.

Beschreibung: Auf diesem hoch aufgelösten Infrarot-Kompositbild vom VLT der Europäischen Südsternwarte ESO umgibt ein ausgedehnter Staubnebel den roten Überriesenstern Beteigeuze. Der Stern Beteigeuze ist vom kleinen, roten Kreis in der Mitte markiert. Wäre er in unserem Sonnensystem, dann reichte sein Durchmesser fast bis zu Jupiters Umlaufbahn. Doch die größere Hülle aus Staub, der den Stern umgibt, reicht etwa 60 Milliarden Kilometer in den Weltraum. Das entspricht etwa der 400-fachen Entfernung zwischen Erde und Sonne.

Die Staubhülle entsteht wahrscheinlich, indem die aufgeblähte Atmosphäre des Überriesen Materie in den Weltraum ausstößt. Das geschieht am Ende der Entwicklung eines massereichen Sterns. Der Staub vermischt sich mit dem interstellaren Medium und könnte später felsige, terrestrische Planeten bilden, die ähnlich aufgebaut sind wie die Erde. Der zentrale, helle Anteil des äußeren Bildes wurde maskiert, um blassere, ausgedehnte Strukturen zu zeigen. Das Bild ist 5,63 Bogensekunden breit.

Zur Originalseite

Die Erde rotiert unter den Very Large Telescopes

Credit: S. Guisard und J. F. Salgado, ESO, Bulletpeople.com; Musik: Arcadia (Lizenz: Kevin Macleod)

Beschreibung: Warum bewegt sich auf diesem Video die Erde? Die meisten Zeitraffervideos des Nachthimmels zeigen, wie sich die Sterne und der Himmel über einer fest stehenden Erde bewegen. Doch hier wurden die Bildfelder digital gedreht, sodass die Sterne (fast) ruhig bleiben und die Erde sich unter ihnen dreht.

Das Video zeigt eindrucksvoll die Rotation der Erde, als ob die Kamera frei im Raum schweben würde. Sie wird als tägliche Bewegung bezeichnet. Die Teleskope im Video sind die Very Large Telescopes VLT in Chile. Es sind vier der größten optischen Teleskope, die weltweit betrieben werden.

Wenn ihr das oben gezeigte Zeitraffervideo genau betrachtet, erkennt ihr auch die Verwendung von Laser-Leitsternen, das Zodiakallicht, die Große und die Kleine Magellansche Wolke und schnell wandernde Erdbeobachtungssatelliten, die Sonnenlicht reflektieren. Das Originalvideo, aus dem diese Abschnitte stammen, seht ihr hier.

Zur Originalseite

Verborgene Schätze von M78

Mitten im Bild leuchtet es in einer Höhlung hellblau. Der Eindruck einer Höhlung entsteht durch einen Staubwulst am Rand des hellblauen Lichtes.

Credit: ESO / Igor Chekalin

Beschreibung: M78 ist am Nachthimmel des Planeten Erde nicht wirklich versteckt. Der große, helle Reflexionsnebel ist etwa 1600 Lichtjahre entfernt in das nebelreiche Sternbild Orion eingebettet. Leuten mit Teleskopen ist es gut bekannt. Doch dieses prächtige Bild von M78 gewann den Astrofotografie-Wettbewerb Verborgene Schätze 2010.

Der Wettbewerb wurde von der Europäischen Südsternwarte ESO veranstaltet und lud Amateurastronominnen und -astronomen ein, Daten aus dem astronomischen Archiv der ESO zu bearbeiten, um nach versteckten kosmischen Perlen zu suchen.

Der Siegereintrag zeigt erstaunliche Details im bläulichen Nebel M78, der von dunklen Staubwolken umschlungen wird, zusammen mit einem kleineren Reflexionsnebel NGC 2071 oben in derselben Region. Der in jüngster Zeit entdeckte gelbliche und sogar noch dichtere veränderliche McNeils Nebel steht markant rechts unter der Mitte der Szenerie.

Dieses Bild entstand aus Daten der WIFI-Kamera am 2,2-Meter-Teleskop der ESO auf La Silla in Chile. Es zeigt etwas mehr als 0,5 Grad vom Himmel. Das sind 15 Lichtjahre in der geschätzten Entfernung von M78.

Zur Originalseite

Atome-für-Frieden-Galaxienkollision

Mitten im Bild, in dem Sterne gleichmäpig verteilt sind, leuchtet ein weißes Knäul von dem nach links und rechts oben Sternströme auslaufen.

Credit: ESO

Beschreibung: Wird das einst aus unserer Galaxis, der Milchstraße? Vielleicht – wenn wir in wenigen Milliarden Jahren mit der Andromedagalaxie kollidieren. Oben ist NGC 7252 abgebildet, ein Durcheinander aus Sternen, das bei der gewaltigen Kollision zweier riesiger Galaxien entstand. Die Kollision dauert Hunderte Millionen Jahre und ist daher im oben gezeigten Bild quasi in der Zeit eingefroren. Dieser Tumult wird wegen der Ähnlichkeit mit der Grafik eines Atoms „Atome-für-Frieden-Galaxie“ genannt.

Dieses Bild wurde vom 2,2-Meter-Teleskop von MPG und ESO in Chile aufgenommen. NGC 7252 ist 600.000 Lichtjahre breit und etwa 220 Millionen Lichtjahre entfernt im Sternbild Wassermann (Aquarius). Da die Seitwärtsgeschwindigkeit der Andromedagalaxie (M31) derzeit unbekannt ist, weiß niemand mit Sicherheit, ob die Milchstraße tatsächlich mit M31 kollidieren wird.

Zur Originalseite

Aussicht mit NGC 2170

Im Bild leuchten in der Mitte markante Staubnebel in rosarot, dahinter ist ein unruhiges Muster aus hellen und schwachen Sternen verteilt. Links ist ein weiterer Nebel, und im ganzen Bild sind zarte Staubspuren erkennbar. Einige helle Sterne haben einen blauen Hof.

Credit und Bildrechte: ESO/J. Emerson/VISTA; Danksagung: Cambridge Astronomical Survey Unit

Beschreibung: Diese staubhaltigen Ströme und neu entstandenen Sterne, die im gehörnten Sternbild Einhorn (Monoceros) treiben, sind Teil der aktiven Sternbildungsregion Monoceros R2, die in eine riesige Molekülwolke eingebettet ist. Die kosmische Szenerie wurde vom Durchmusterungsteleskop VISTA im nahen Infrarotlicht aufgenommen.

Bilder im sichtbaren Licht zeigen den staubhaltigen Nebel NGC 2170 rechts neben der Mitte als einen Komplex aus bläulichen Reflexionsnebeln. Doch diese alles durchdringende Ansicht im nahen Infrarot zeigt verräterische Zeichen andauernder Sternbildung und massereicher junger Sterne, die im sichtbaren Licht vom Staub verdeckt sind.

Energiereiche Winde und die Strahlung heißer, junger Sterne formen das Aussehen der interstellaren Wolken. Die Region Monoceros R2 steht am Himmel in der Nähe des Sterne bildenden Orionnebels, doch sie ist fast doppelt so weit entfernt wie dieser – etwa 2700 Lichtjahre. In dieser Entfernung ist diese Ansicht etwa 80 Lichtjahre breit.

Zur Originalseite

Laserangriff auf das galaktische Zentrum

Mitten im Bild steht ein Observatorium mit geöffneter Kuppel. Nach oben schießt ein Laserstrahl ins Zentrum der Milchstraße, die von links unten aufsteigt. Der dunkle Himmel ist von Sternen übersät.

Credit: Yuri Beletsky (ESO)

Beschreibung: Warum schießen diese Leute einen mächtigen Laserstrahl ins Zentrum unserer Galaxis? Zum Glück ist das nicht der Erstschlag eines galaktischen Krieges. Astronomen* am Very Large Telescope (VLT) in Chile versuchen die Verzerrung der veränderlichen Erdatmosphäre zu messen.

In großer Höhe werden Atome von einem Laserstrahl angeregt und regelmäßig abgebildet. Das erschtint wie ein künstlicher Stern, der Forschenden die sofortige Messung der atmosphärischen Unschärfe erlaubt. Diese Information wird in einen VLT-Teleskopspiegel eingespeist, der daraufhin ganz leicht deformiert wird, um diese Unschärfe auszugleichen.

Hier beobachtete das VLT unser galaktisches Zentrum, daher wurden Messungen der atmosphärischen Unschärfe in dieser Richtung benötigt. Was einen intergalktischen Krieg betrifft: Im galaktischen Zentrum sind keine Opfer zu befürchten. Der Strahl dieses mächtigen Lasers wäre mit dem Licht unserer Sonne kombiniert und erscheint mit ihr zusammen nur so hell und zart wie ein weit entfernter Stern.

Zur Originalseite

HD 10180: das bisher reichhaltigste Planetensystem

Künstlerische Animation: ESO, L. Calçada

Beschreibung: Gibt es andere reichhaltige Planetensysteme? Unser Sonnensystem hat die meisten Planeten aller uns bekannten Sterne, sehr wahrscheinlich weil es so schwierig ist, Planeten bei anderen Sternen zu finden. Genaue Messungen zeigten nun jedoch ein schwaches, aber komplexes Wackeln des sonnenähnlichen Sterns HD 10180, was vermuten lässt, dass er mindestens fünf Planeten oder mehr besitzt. Damit ist es das reichhaltigste bisher bekannten extrasolaren Planetensystem.

Die Planeten von HD 10180 wurden in Daten gefunden, die im Lauf von Jahren mit dem empfindlichen HARPS-Spektrographen gesammelten wurden. Der HARPS-Spektrograph ist am 3,6-Meter-Teleskop der ESO auf La Silla (Chile) montiert. Das Planetensystem unterscheidet sich wohl stark von unserem Sonnensystem, weil alle bei HD 10180 entdeckten Planeten eine ähnliche Masse wie Neptun besitzen, aber weniger weit vom Stern entfernt sind als der Mars von der Sonne.

Das oben gezeigte Video ist die Animation eines Fluges in dieses System. In Zukunft könnten mehr genaue Daten von einem längeren Zeitraum die Perioden für das Aufspüren des Wackelns von Sternen bis in jenen Bereich erweitern, in dem weiter entfernte und erdähnlichere Planeten entdeckt werden können.

Zur Originalseite