EHT löst den zentralen Jet des Schwarzen Lochs in Cen A auf

Das Event Horizon Telescope (EHT) zeigt einen Bildausschnitt eines Schwarzen Lochs in Centaurus A, der am Himmel die Winkelgröße eines Golfballs auf dem Mond einnimmt.

Bildcredit: Universität Radboud; CSIRO/ATNF/I.Feain et al., R.Morganti et al., N.Junkes et al.; ESO/WFI; MPIfR/ESO/APEX/A. Weiss et al.; NASA/CXC/CfA/R. Kraft et al.; TANAMI/C. Mueller et al.; EHT/M. Janssen et al.

Wie stoßen sehr massereiche Schwarze Löcher mächtige Strahlen aus? Um das herauszufinden, bildete das Event Horizon Telescope (EHT) das Zentrum der nahen aktiven Galaxie Centaurus A ab. Im Bild ist eine Kaskade an immer detailreicheren Bildern eingefügt. Der große Bildausschnitt zeigt Cen A auf einem großen Teil des Himmels. Der eingeblendete Mond zeigt die Größenordnung. Der kleinste Himmelsausschnitt unten hat die Größe eines Golfballs auf dem Mond.

Das neue Bild zeigt etwas, das wie zwei Strahlen aussieht. Es sind aber zwei Seiten eines einzigen Strahls. Diese neu entdeckte Aufhellung des Strahlenrandes ist keine Lösung für das Rätsel der Entstehung der Strahlen. Es lässt jedoch vermuten, dass der Teilchenfluss durch einen starken Druck begrenzt wird – vielleicht durch ein Magnetfeld.

Das EHT ist eine Kooperation von Radioteleskopen auf der ganzen Welt. Zu den beteiligten Instituten zählen das Caltech-Submillimeter-Observatorium auf Hawaii in den USA, ALMA in Chile, NOEMA in Frankreich und weitere. Das EHT beobachtet weiterhin massereiche Schwarze Löcher in der Nähe und ihre energiereiche Umgebung.

Zur Originalseite

Die Galaxie, der Strahl und das berühmte Schwarze Loch

Die elliptische Galaxie Messier 87 (M87) im Sternbild Jungfrau enthält das sehr massereiche Schwarze Loch, das vom Event Horizon Telescope abgebildet wurde.

Bildcredit: NASA, JPL-Caltech, Event Horizon Telescope Collaboration

Beschreibung: Die helle elliptische Galaxie Messier 87 (M87) enthält das sehr massereiche Schwarze Loch, das auf dem allerersten je gemachten Bild eines Schwarzen Lochs vom Event Horizon Telescope auf der Erde abgebildet wurde. Die etwa 55 Millionen Lichtjahre entfernte M87 ist ein Riese im Virgo-Galaxienhaufen. Die große Galaxie wurde auf diesem Infrarotbild des Weltraumteleskops Spitzer in blauen Farbtönen gerendert. M87 erscheint großteils strukturlos und wolkig, doch das Spitzer-Bild zeigt Tetails der relativistischen Strahlen auf, die aus der Zentralregion der Galaxie schießen.

Die Strahlen, die rechts oben im Einschub zu sehen sind, sind Tausende Lichtjahre lang. Der hellere Strahl rechts kommt auf uns zu und verläuft in der Nähe unserer Sichtlinie. Gegenüber bringt die Erschütterung, die durch einen an sich unsichtbaren Strahl entsteht, der sich von uns entfernt, einen blasseren Materiebogen zum Leuchten.

Rechts unten im Einschub seht ihr im Kontext das historische Bild des Schwarzen Lochs im Zentrum der Riesengalaxie und der relativistischen Strahlen. Im Spitzer-Bild ist das sehr massereiche Schwarze Loch in keiner Weise aufgelöst, es ist von einfallender Materie umgeben, diese ist die Quelle der gewaltigen Energie für die relativistischen Strahlen, die aus dem Zentrum der aktiven Galaxie M87 strömen.

Zur Originalseite

Wenn Schwarze Löcher kollidieren


Videocredit und -rechte: Simulating Extreme Spacetimes Collaboration

Beschreibung: Was passiert, wenn zwei Schwarze Löcher kollidieren? Dieses extreme Szenario passiert in den Zentren vieler verschmelzender Galaxien und in Mehrfachsternsystemen. Dieses Video zeigt eine Computeranimation der Endphase so einer Verschmelzung und veranschaulicht die Gravitationslinseneffekte, die am Sternenfeld im Hintergrund auftreten würden.

Die schwarzen Regionen markieren die Ereignishorizonte des dynamischen Duos, während ein darum herum verlaufender Ring aus sich verschiebenden Hintergrundsternen die Position ihres gemeinsamen Einsteinrings anzeigt. Von allen Hintergrundsternen sind Bilder nicht nur außerhalb dieses Einsteinrings sichtbar, sondern jeweils auch ein oder mehrere Begleitbilder im Inneren.

Am Ende verschmelzen die beiden Schwarzen Löcher. Heute wissen wir, dass das Endstadium so einer Verschmelzung heftige Gravitationsstrahlung erzeugt, die eine neue Sichtweise auf unser Universum bietet.

Diese Woche ist Schwarze-Löcher-Woche der NASA

Zur Originalseite

Das Schwarze Loch im Zentrum von M87 in polarisiertem Licht

Die gemessene Richtung der Eigenrotation (Polarisation) von Radiowellen, die durch das starke Magnetfeld entsteht, welches das extrem massereiche Schwarze Loch in der elliptischen Galaxie M87 umgibt.

Bildcredit: Event Horizon Telescope Collaboration; Text: Jayanne English (U. Manitoba)

Beschreibung: Um es mit Carl Sagans berühmten Worten zu sagen: „Wenn du Strahlen aus Schwarzen Löchern strömen lassen willst, musst du erst Magnetfelder erzeugen.“ Dieses Bild zeigt die gemessene Richtung der Eigenrotation (Polarisation) von Radiowellen. Die Polarisation entsteht durch das starke Magnetfeld, welches das extrem massereiche Schwarze Loch im Zentrum der elliptischen Galaxie M87 umgibt.

Die Radiowellen wurden vom Event Horizon Telescope (EHT) detektiert, welches Daten von weltweit verteilten Radioteleskopen zusammenführt. Die Polarisationsstruktur wurde mithilfe computergenerierter Flusslinien kartiert und überlagert das berühmte EHT-Bild des Schwarzen Lochs, das 2019 veröffentlicht wurde.

Das vollständige dreidimensionale Magnetfeld ist komplex. Vorläufige Analysen zeigen, dass Teile des Feldes wie erwartet mit der sich ansammelnden Materie um das Schwarze Loch kreisen. Doch eine andere Komponente scheint sich vertikal vom Schwarzen Loch wegzubewegen. Diese Komponente könnte erklären, warum die Materie nicht in das Loch fällt, sondern in den Strahl von M87 geschleudert wird.

Zur Originalseite

Der Virgo-Galaxienhaufen

Die Galaxien des Virgo-Galaxienhaufens mit M64, M86, M87 und Markarjans Augen.

Bildcredit und Bildrechte: Fernando Pena

Beschreibung: Die Galaxien des Virgohaufens sind über dieses detailreiche Teleskopsichtfeld verstreut. Die kosmische Szene wurde am dunklen Himmel in der Nähe von Jalisco in Mexiko auf dem Planeten Erde fotografiert. Sie ist ungefähr drei Vollmonde breit.

Der Virgohaufen ist etwa 50 Millionen Lichtjahre entfernt, er ist der nächstgelegene große Galaxienhaufen in der Umgebung unserer Lokalen Gruppe. Virgos helle elliptische Galaxien des Messierkatalogs treten markant hervor: Links oben M87, rechts unter der Mitte M84 (unten) und darüber M86.

M84 und M86 gehören auch zu Markarjans Galaxienkette, einer visuell auffälligen, senkrechten Galaxienkette auf der rechten Seite des Bildes. In der Nähe der Kettenmitte liegt ein faszinierendes, miteinander wechselwirkendes Galaxienpaar: NGC 4438 und NGC 4435. Manche kennen die beiden als Markarjans Augen.

Die riesige elliptische Galaxie M87 ist die markanteste im Virgohaufen. Sie enthält ein sehr massereiches Schwarzes Loch. Es ist das erste Schwarze Loch, das je vom Event Horizon Telescope auf dem Planeten Erde abgebildet wurde.

Zur Originalseite

Visualisierung: Schwarzes Loch mit Akkumulationsscheibe


Visualisierungscredit: Goddard-Raumfahrtzentrum der NASA, Jeremy Schnittman

Beschreibung: Wie sieht es aus, wenn man ein schwarzes Loch umkreist? Wenn das schwarze Loch von einer wirbelnden Scheibe aus leuchtendem Gas, das sich ansammelt, umgeben ist, lenkt die gewaltige Gravitation des schwarzen Lochs das Licht ab, das die Scheibe ausstrahlt. Dadurch sieht sie sehr ungewöhnlich aus. Diese Videoanimation visualisiert das.

Das Video beginnt mit der Beobachterin, die von knapp über der Ebene der Akkretionsscheibe auf das schwarzen Lochs blickt. Um das zentrale schwarze Loch herum verläuft ein dünnes, rundes Bild der umgebenden Scheibe, es markiert die Position der Photonensphäre – in deren Inneren der Ereignishorizont des schwarzen Lochs liegt.

Teile des großen Hauptbildes der Scheibe auf der linken Seite erscheinen heller, während sie sich auf euch zubewegen. Während das Video weiterläuft, fliegt ihr über das schwarze Loch und schaut von oben hinunter. Dann durchquert ihr die Scheibenebene am anderen Ende und kommt zum ursprünglichen Aussichtspunkt zurück. Die Akkretionsscheibe erzeugt einige interessante Bildumkehrungen, doch sie wirkt niemals flach.

Visualisierungen wie diese sind heute besonders interessant, weil das Event Horizon Telescope schwarze Löcher so detailreich wie nie zuvor abbildet.

Zur Originalseite

Das Galaktische Zentrum von Radio bis Röntgen

Sgr A*, das Zentrum unserer Galaxis mit einem Schwarzen Loch, leuchtet in jeder Art von Licht; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: NASA, CXC, UMass, D. Wang et al.; Radio: NRF, SARAO, MeerKAT

Beschreibung: Auf wie viele Arten leuchtet das Zentrum unserer Galaxis? Diese rätselhafte Region, etwa 26.000 Lichtjahre entfernt ist und im Sternbild Schütze (Sagittarius) liegt, leuchtet in jeder Art von Licht, die wir sehen können.

Für dieses Bild wurde mit dem Röntgenobservatorium Chandra der NASA im Erdorbit energiereiche Röntgenstrahlung abgebildet, diese erscheint in Grün und Blau. Die rot gefärbte Abbildung der energiearmen Radiostrahlung stammt von der Teleskopanordnung MeerKAT des SARAO, die auf der Erde stationiert ist. Rechts neben der farbenfrohen Zentralregion liegt Sagittarius A (Sgr A), eine starke Radioquelle, die sich an derselben Stelle befindet wie Sgr A*, das sehr massereiche Schwarze Loch im Zentrum unserer Galaxis.

Heißes Gas, das Sgr A* umgibt, sowie eine Reihe parallel verlaufender Radiofilamente, die als der „Bogen“ bezeichnet werden, sind links neben der Bildmitte zu sehen. Weiters verlaufen im Bild zahlreiche ungewöhnliche einzelne Radiofilamente. Viele Sterne kreisen in und um Sgr A*, außerdem zahlreiche kleine Schwarze Löcher und dichte Sternkerne, die als Neutronensterne und Weiße Zwerge bekannt sind. Das sehr massereiche Schwarze Loch im Zentrum der Milchstraße wird gegenwärtig vom Event Horizon Telescope abgebildet.

Aktivitäten: NASA-Wissenschaft zu Hause
Zur Originalseite

Die Galaxie, der Strahl und das Schwarze Loch

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, Event Horizon Telescope Collaboration

Beschreibung: Die helle elliptische Galaxie Messier 87 (M87) enthält das sehr massereiche Schwarze Loch auf dem historischen ersten Bild eines Schwarzen Lochs, das vom Event Horizon Telescope auf dem Planeten Erde aufgenommen wurde. M87 ist eine Riesin im etwa 55 Millionen Lichtjahre entfernten Virgo-Galaxienhaufen. Die große Galaxie wurde auf diesem Infrarotbild des Weltraumteleskops Spitzer in blauen Farbtönen gerendert.

M87 erscheint fast strukturlos und wolkenartig, doch das Spitzer-Bild zeigt Details der relativistischen Jets, die aus der Zentralregion der Galaxie schießen. Die Strahlen im Einschub rechts oben sind Tausende Lichtjahre lang. Der hellere Strahl rechts strömt in unsere Richtung und liegt in der Nähe unserer Sichtlinie. Gegenüber erzeugt ein unsichtbarer fortströmender Strahl eine Erschütterung, welche einen blassen Materiebogen beleuchtet.

Der Einschub rechts unten zeigt das historische Bild des Schwarzen Lochs, das sich im Zentrum der riesigen Galaxie und der relativistischen Strahlen befindet. Das sehr massereiche Schwarze Loch ist im Spitzer-Bild völlig unaufgelöst, es ist von einfallender Materie umgeben und liefert die gewaltige Energie, welche die relativistischen Strahlen aus dem Zentrum der aktiven Galaxie M87 treibt.

Zur Originalseite