BHB2007: Ein junger Doppelstern entsteht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: ALMA (ESO/NAOJ/NRAO), F. O. Alves et al.

Beschreibung: Wie entstehen Doppelsterne? Um das herauszufinden, fotografierte das Atacama Large Millimeter Array (ALMA) der ESO kürzlich eines der höchstaufgelösten Bilder, die je von einem Doppelsternsystem im Entstehungsstadium aufgenommen wurden.

Die meisten Sterne sind nicht alleine – sie entstehen typischerweise als Teil von Mehrfachsternsystemen, in denen jeder Stern um einen gemeinsamen Schwerpunkt kreist. Die beiden hellen Flecken auf diesem Bild sind kleine Scheiben, welche die entstehenden Protosterne in [BHB2007] 11 umgeben. Die brezelförmigen Ranken, die sie umgeben, bestehen aus Gas und Staub. Sie wurden durch Gravitation aus einer größeren Scheibe herausgezogen. Die zirkumstellaren Ranken, welche die Sterne umgeben, reichen ungefähr bis zum Radius der Neptunbahn.

Das BHB2007-System ist ein kleiner Teil des Pfeifennebels (auch bekannt als Barnard 59). Dieser ist ein fotogenes Netzwerk aus Staub und Gas, das im Sternbild Schlangenträger aus der Spiralscheibe der Milchstraße hervortritt. Der Entstehungsprozess des Doppelsterns sollte in wenigen Millionen Jahren abgeschlossen sein.

Zur Originalseite

Die außergewöhnliche Spirale in LL Pegasi

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, HLA; Bearbeitung und Bildrechte: Domingo Pestana und Raul Villaverde

Beschreibung: Wie entstand die seltsame Spiralstruktur links oben? Das weiß niemand, doch sie steht wahrscheinlich im Zusammenhang mit einem Stern in einem Doppelsternsystem, der in die Phase eines planetarischen Nebels eintritt, bei der seine äußere Atmosphäre abgestoßen wird.

Die riesige Spirale hat die Breite von etwa einem Drittel eines Lichtjahrs, besteht aus vier oder fünf vollständigen Windungen und weist eine beispiellose Gleichmäßigkeit auf. Wenn man die Ausdehnungsrate des Spiralgases in Betracht zieht, entsteht etwa alle 800 Jahre eine neue Schicht, was ziemlich genau der Zeit entspricht, in der die beiden Sterne einander umkreisen.

Das Sternsystem, das sie erzeugte, wird meist als LL Pegasi, aber auch als AFGL 3068 bezeichnet. Die ungewöhnliche Struktur selbst wurde als IRAS 23166+1655 katalogisiert. Dieses Bild wurde in nahem Infrarotlicht mit dem Weltraumteleskop Hubble aufgenommen. Warum die Spirale leuchtet, ist selbst ein Rätsel, die führende Hypothese dazu besagt, dass sie das Licht naher Sterne reflektiert.

Zur Originalseite

NGC 1360: Der Wanderdrosseleiernebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Josep Drudis, Don Goldman

Beschreibung: Diese hübsche kosmische Wolke ist etwa 1500 Lichtjahre entfernt und erinnert in Form und Farbe an ein Wanderdrosselei. Der Nebel ist ungefähr 3 Lichtjahre groß und in das südliche Sternbild Chemischer Ofen sicher eingebettet. Er wird als planetarischer Nebel bezeichnet, stellt jedoch keinen Beginn dar, sondern geht mit einer kurzen Schlussphase in der Entwicklung eines alternden Sterns einher.

Auf diesem Teleskopbild sieht man den Zentralstern von NGC 1360, er ist als Doppelsternsystem bekannt, das wahrscheinlich aus zwei weißen Zwergsternen besteht, die weniger Masse als die Sonne besitzen, aber viel heißer sind. Die intensive und sonst unsichtbare Ultraviolettstrahlung der Zwergsterne hat die Elektronen der Atome im umgebenden Gasmantel abgestreift. Der überwiegend blaugrüne Farbton von NGC 1360 ist die starke Strahlung, die bei der Rekombination von Elektronen mit doppelt ionisierten Sauerstoffatomen entsteht.

Zur Originalseite

Hubble zeigt den roten Rechtecknebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Wie ist der ungewöhnliche Rote Rechtecknebel entstanden? Im Zentrum des Nebels befindet sich ein alterndes Doppelsternsystem, das zwar die Energie für den Nebel liefert, aber – bis jetzt – nicht seine Farben erklärt.

Die ungewöhnliche Form des Roten Rechtecknebels entstand wahrscheinlich durch einen dicken Staubwulst, der den normalerweise kugelförmigen Ausfluss in die Kegelformen drückt, die einander an der Spitze berühren. Weil wir den Staubring von der Seite sehen, scheinen die Begrenzungsränder der Kegelformen ein X zu bilden. Die ausgeprägten Sprossen lassen vermuten, dass der Ausfluss schubweise verläuft.

Die ungewöhnlichen Farben des Nebels sind jedoch weniger gut erklärbar, es gibt Vermutungen, dass sie teilweise von Kohlenwasserstoffmolekülen stammen, die sogar Bausteine für organisches Leben sein könnten.

Der Rote Rechtecknebel liegt ungefähr 2300 Lichtjahre entfernt im Sternbild Einhorn (Monoceros). Der Nebel ist hier sehr detailreich auf einem kürzlich überarbeiteten Bild des Weltraumteleskops Hubble abgebildet. Wenn in wenigen Millionen Jahren bei einem der Zentralsterne der Kernbrennstoff zur Neige geht, wird der Rote Rechtecknebel wahrscheinlich zu einem planetarischen Nebel aufblühen.

Zur Originalseite

Die außergewöhnliche Spirale in LL Pegasi

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: ESA, Hubble, R. Sahai (JPL), NASA

Beschreibung: Wie entsteht diese seltsame Spirale? Niemand weiß es, doch sie geht wahrscheinlich mit einem Stern in einem Doppelsternsystem einher, der die Phase eines planetarischen Nebels erreicht, bei der seine äußere Atmosphäre abgestoßen wird. Die riesige Spirale misst etwa ein drittel Lichtjahr und ist mit ihren vier oder fünf vollständigen Windungen unglaublich regelmäßig.

Angesichts der Ausdehnungsrate des Spiralgases erscheint etwa alle 800 Jahre eine neue Schicht, was in etwa der Zeit entspricht, in der zwei Sterne einander umkreisen. Das Sternsystem, das sie erzeugt, ist als LL Pegasi bekannt, aber auch als AFGL 3068. Die ungewöhnliche Struktur selbst wurde als IRAS 23166+1655 katalogisiert.

Dieses Bild wurde mit dem Weltraumteleskop Hubble in nahem Infrarotlicht fotografiert. Warum die Spirale leuchtet, ist ein weiteres Rätsel, am wahrscheinlichsten ist, dass sie das Licht naher Sterne reflektiert.

Zur Originalseite

Oktober-Polarlicht am Präriehimmel

Vor einem hellen, senkrecht gestreiften Polarlicht, das unten grün und oben rot leuchtet, rotiert ein Windrad. Unten ragen einige Bäume auf.

Bildcredit und Bildrechte: Randy Halverson

Wind und Weltraumwetter verwandelten diese gespenstische Nachthimmelslandschaft. Am 1. Oktober wurden die Windmühle in der Prärie und ein farbenprächtiges Polarlicht in South Dakota in den USA fotografiert. Mit den längeren Herbstnächten begann die gute Jahreszeit für Polarlichter.

Nordlichter mit grünen bis zu selteneren rötlichen Farbtönen werden durch geomagnetische Stürme ausgelöst. Sie werden durch Sonnenaktivität hervorgerufen. Die Stürme reichen vor dem Hintergrund der fernen Sterne in der nördlichen Nacht hoch über die Wolkenbank bis weit über 100 Kilometer.

Der visuelle Doppelstern Mizar markiert die Mitte der Deichsel am Großen Wagen. Er ist links im Bild leicht erkennbar. Die Sterne Merak und Dubhe im Großen Wagen zeigen zum Himmelsnordpol. Sie sind nahe der Bildmitte senkrecht angeordnet.

Zur Originalseite

Der Rote Rechtecknebel von Hubble

Der rote Nebel im Bild hat die Form eines Rechtecks. Er zeit markante Diagonalen und Querstreben.

Bildcredit: ESA, Hubble, NASA; Neubearbeitung: Steven Marx, Hubble-Vermächtnisarchiv

Wie entstand der ungewöhnliche Rechtecknebel? In der Mitte des Nebels befindet sich ein alterndes Doppelsternsystem. Es liefert sicherlich die Energie für den Nebel, erklärt aber nicht seine Farben – zumindest bis jetzt.

Die ungewöhnliche Form des Roten Rechtecks entsteht wahrscheinlich durch einen dicken Staubwulst. Er drückt den an sich kugelförmigen Ausfluss zu Kegelformen zusammen. Diese laufen an den Spitzen zusammen. Wir sehen den Wulst von der Seite. Daher bilden die eingrenzenden Ränder der Kegelformen scheinbar ein X.

Die ausgeprägten Stufen lassen vermuten, dass der Ausfluss stoßweise abgegeben wird. Die ungewöhnlichen Farben des Nebels sind weniger gut erklärbar. Laut Vermutungen stammen sie teilweise von Kohlenwasserstoffmolekülen. Diese könnten Bausteine für Leben sein.

Der Rote Rechtecknebel ist etwa 2300 Lichtjahre entfernt. Er befindet sich im Sternbild Einhorn (Monoceros). Das sehr detailreiche Bild des Nebels stammt vom Weltraumteleskop Hubble. Es wurde kürzlich überarbeit. In wenigen Millionen Jahren ist der Kernbrennstoff eines seiner Zentralsterne weiter verringert. Dann erblüht der Rote Rechtecknebel wahrscheinlich zu einem planetarischen Nebel.

Zur Originalseite

Röntgenstrahlen des Supernovaüberrestes SN 1006

Bildfüllend ist ein rotes, rundes Objekt dargestellt. Es erinnert an eine Quaste aus Wolle und ist am Rand von einer schimmernden Oberfläche überzogen.

Bildcredit: NASA/CXC/P. Frank Winkler (Middlebury-College)

Es sieht wie ein Bovist aus. Doch es ist der Überrest einer der sicherlich hellsten Supernovae der Geschichte. 1006 n. Chr. wurde sie als Aufhellung am Nachthimmel über Regionen beschrieben, die nun als China, Ägypten, Irak, Italien, Japan und die Schweiz bekannt sind.

Die sich ausdehnende Trümmerwolke im südlichen Sternbild Wolf (Lupus) stammt von der Explosion. Sie bietet immer noch ein kosmisches Spektakel im gesamten elektromagnetischen Spektrum.

Dieses Bild entstand aus Aufnahmen in drei Farben des Röntgenlichts. Sie wurden mit dem Röntgenobservatorium Chandra im Orbit aufgenommen. Die Trümmerwolke ist als Supernovaüberrest SN 1006 bekannt. Sie ist etwa 60 Lichtjahre groß und besteht aus den Überresten eines Weißen Zwergsterns.

Der kompakte weiße Zwerg war Teil eines Doppelsternsystems. Er sammelte nach und nach Materie seines Begleitsterns an. Der Materiezuwachs löste schließlich eine thermonukleare Explosion aus, die den Zwergstern zerstörte.

Die Entfernung zum Supernovaüberrest beträgt etwa 7000 Lichtjahre. Somit fand diese Explosion tatsächlich 7000 Jahre vor der Ankunft des Lichts 1006 bei der Erde statt. Stoßwellen im Überrest beschleunigen Teilchen auf extreme Energien. Sie gelten als Quelle der rätselhaften kosmischen Strahlen.

Zur Originalseite