SN 2014J schickt keine Röntgenstrahlen

Mitten im Bild leuchtet ein Nebel, er ist im Zentrum sehr hell und wird nach außen hin rötlich. Rechts neben der Mitte markiert ein weißer Kasten die Position der Supernova SN 2014J. Die Aufnahmen in Röntgenlicht vor und nach der Explosion sind in zwei Einschüben unten gezeigt.

Bildcredit: NASA / CXC / SAO / R. Margutti et al.

Im Jänner beobachteten Teleskope und Observatorien auf der ganzen Erde, wie die Helligkeit der Supernova SN 2014J in der nahen Galaxie M82 anstieg. Doch die vielleicht wichtigste Beobachtung gelang im Orbit. Dort sah das Röntgenobservatorium Chandra nämlich – nichts.

Die Explosion von SN 2014J wurde als Typ-Ia-Supernova klassifiziert. Man dachte, ein Weißer Zwerg hätte stetig Materie von einem Begleitstern abgezogen. Dieser Zuwachs hätte schließlich die Supernova gezündet. Zu diesem Modell gehört Röntgenstrahlung. Sie entsteht, wenn die Druckwelle der Supernova auf die übrige Materie in der Umgebung des Weißen Zwergs trifft.

Doch bei der Supernova SN 2014J war keine Röntgenstrahlung zu messen. Chandras Falschfarben-Röntgenbild der Galaxie M82 zeigt zwei großteils leeren Nahaufnahmen der Position der Supernova. Sie sind in den Einschüben „Pre“ (vorher) und „Post“ (nachher) abgebildet. Nach dem überraschenden Mangel an Röntgenstrahlung von SN 2014J werden neue Modelle entwickelt. Sie sollen klären, was die kosmische Explosion auslöste.

Zur Originalseite

Kosmischer Krebsnebel

Zwischen gleichmäßig verteilten Sternen leuchtet der planetarische Nebel M1. Er ist eine längliche, lebhafte Wolke, die am Rand rötlich und innen weiß leuchtet.

Bildcredit: NASA, Chandra-Röntgenobservatorium, SAO, DSS

Der Krebs-Pulsar ist ein magnetischer Neutronenstern. Er ist so groß wie eine Stadt und rotiert 30 Mal pro Sekunde um seine Achse. Der Pulsar befindet sich in der Mitte des Krebsnebels, der auf diesem Weitwinkelbild dargestellt ist. Der Supernovaüberrest liegt in unserer Milchstraße.

Das Kompositbild entstand aus optischen Übersichtsdaten und Röntgendaten des Chandra-Observatoriums im Orbit. Es wurde zur 15-Jahres-Feier von Chandras Erforschung des Hochenergie-Kosmos veröffentlicht.

Wie ein kosmischer Dynamo liefert der Pulsar die Energie für die Emissionen im Röntgenbereich und im sichtbaren Licht des Nebels. Dazu beschleunigt er geladene Teilchen auf extreme Energien und erzeugt so die Strahlen und Ringe, die im Röntgenlicht leuchten. Die innerste Ringstruktur ist etwa ein Lichtjahr groß.

Der rotierende Pulsar hat mehr Masse als die Sonne und ist so dicht wie ein Atomkern. Er ist der kollabierte Kern des massereichen Sterns, der explodierte. Der Nebel besteht aus den Überresten der äußeren Schichten des Sterns, die sich ausdehnen. Die Supernovaexplosion wurde im Jahr 1054 beobachtet.

Zur Originalseite

Supernovaüberrest SN 1006

Vor einem Hintergrund aus kleinen, relativ dicht verteilten Sternen breitet sich eine Blase aus. Sie wirkt ein bisschen fluffig, der Rand erinnert an eine Seifenblase.

Bildcredit: NASA, ESA, Zolt Levay (STScI)

1006 n. Chr. blitzte am Himmel des Planeten Erde ein neuer Stern auf. Er war die vielleicht hellste Supernova seit Beginn der Geschichtsaufzeichnung. Die Trümmerwolke der Sternexplosion dehnt sich aus. Sie befindet sich im südlichen Sternbild Wolf. Noch heute veranstaltet sie eine kosmische Lichtschau im ganzen elektromagnetischen Spektrum.

Das Kompositbild zeigt Röntgendaten des Chandra-Observatoriums in Blau. Optische Daten sind in gelblichen Farbtönen und Radiodaten sind rot dargestellt. Die Trümmer sind heute als Supernovaüberrest SN 1006 bekannt. Die Wolke hat einen Durchmesser von etwa 60 Lichtjahren. Sie stammt vermutlich von einem Weißen Zwergstern.

Der kompakte Weiße Zwerg ist Teil eines Doppelsternsystems. Er zog allmählich Materie von seinem Begleitstern ab. Die Ansammlung an Masse löste später eine thermonukleare Explosion aus, die den Weißen Zwerg zerstörte.

Die Entfernung zum Supernovaüberrest beträgt etwa 7000 Lichtjahre. Somit ereignete sich die Explosion 7000 Jahre vor 1006, als das Licht die Erde erreichte. Stoßwellen im Überrest beschleunigen die Teilchen auf extreme Energien. Sie sind vermutlich eine Quelle der rätselhaften kosmischen Strahlung.

Zur Originalseite

M51: Röntgenstrahlen der Strudelgalaxie

Für dieses Bild wurden Daten in Röntgenlicht violett gefärbt. Darüber wurde ein Bild in sichtbarem Licht gelegt, man kann es aufrufen, wenn man den Mauspfeil über das Bild schiebt.

Bildcredit und Bildrechte: Röntgen: NASA, CXC, R. Kilgard (Wesleyan U. et al.; Optisch: NASA, STScI

Was wäre, wenn wir eine ganze Spiralgalaxie röntgen? Das tat kürzlich (wieder) das NASA-Röntgenobservatorium Chandra. Ziel waren zwei nahe Galaxien, die miteinander wechselwirken. Sie sind zusammen als Studelgalaxie (M51) bekannt. Dieses Bild der Spirale und ihrer Nachbarin stammt von Chandra. Es zeigt Hunderte glitzernder Röntgensterne. Für das Bild wurden Beobachtungen von Chandra im Röntgenlicht und vom Weltraumteleskop Hubble in sichtbarem Licht kombiniert.

Die Zahl heller Röntgenquellen ist für normale Spiralgalaxien oder elliptische Galaxien ungewöhnlich hoch. Sie lässt darauf schließen, dass im kosmischen Strudelbecken in M51 intensive Sternbildung stattfand. Wahrscheinlich handelt es sich Binärsysteme mit Neutronenstern und Schwarzen Löchern. Die beiden Galaxien sind als NGC 5194 (rechts) und NGC 5195 (links) katalogisiert. In ihren hellen Kernen gibt es Aktivität mit viel Energie.

Das Falschfarbenbild zeigt Röntgenlicht in Violett. Die diffusen Röntgen-Emissionen stammen zumeist von Gas, das von Supernova-Explosionen auf viele Millionen Grad aufgeheizt wird.

Zur Originalseite

Im Inneren des Flammennebels

Das Bild zeigt den Flammennebel im Sternbild Orion und seine Umgebung. Darüber wurde eine Röntgen-Infrarot-Abbildung gelegt.

Bildcredit: Optisch: DSS; Infrarot: NASA/JPL-Caltech; Röntgen: NASA/CXC/PSU/ K.Getman, E.Feigelson, M.Kuhn und das MYStIX-Team

Das optische Bild zeigt eine staubige, überfüllte Sternbildungsregion im Gürtel des Orion. Sie ist etwa 1400 Lichtjahre entfernt. Daraus sticht der Flammennebel hervor. Röntgendaten des Chandra-Observatoriums und Infrarotbilder des Weltraumteleskops Spitzer blicken tief ins Innere der Wolken. Sie bestehen aus leuchtendem Gas und undurchsichtigen Staubwolken.

Wenn ihr den Mauspfeil über das Bild schiebt oder darauf klickt, kommen viele Sterne im jungen eingebetteten Haufen NGC 2024 zum Vorschein. Sie sind nur 200.000 bis 1,5 Millionen Jahre alt. Das Kompositbild aus Röntgen- und Infrarot-Daten ist etwa 15 Lichtjahre breit. Es zeigt das Zentrum des Flammennebels.

Die Röntgen-Infrarot-Daten zeigen auch, dass sich die jüngsten Sterne auf die Mitte des Haufens befinden. Das widerspricht einfachen Modellen der Sternbildung dieser Sternschmiede. Diese Modelle besagen, dass die Sternbildung zuerst im dichteren Zentrum beginnt. Dann wandert sie schrittweise nach außen zum Rand. Dabei sollten ältere Sterne im Zentrum des Flammennebels zurückbleiben, nicht die jüngeren.

Zur Originalseite

Der massereiche Galaxienhaufen El Gordo

Der rosarote Nebel im Bild zeigt die Röntgenstrahlung eines der massereichsten Galaxienhaufen, die wir kennen. Der blaue Nebel im Bild zeigt die berechnete Verteilung der Dunklen Materie, sie wurde anhand der Verzerrung dahinter liegender Galaxien berechnet.

Bildcredit: NASA, ESA, J. Jee (UC Davis) et al.

Es ist größer als eine Brotdose. Sogar viel größer als alle Brotladen der Welt. Der Galaxienhaufen ACT-CL J0102-4915 ist eines der größten und massereichsten Objekte, die wir kennen. Er ist sieben Milliarden Lichtjahre (z = 0.87) entfernt und hat den Spitznamen „El Gordo“. ACT-CL J0102-4915 ist etwa sieben Millionen Lichtjahre groß. Er enthält eine Masse von einer Billiarde (1.000.000.000.000.000) Sonnen.

Dieses Bild von El Gordo kombiniert ein Bild des Weltraumteleskops Hubble im sichtbaren Licht mit einem Röntgenbild des Chandra-Observatoriums. Es zeigt das heiße Gas in Rosarot. Eine computergenerierte Karte zeigt die wahrscheinlichste Verteilung der Dunklen Materie in Blau. Die Dunkle Materie wurde anhand der Verzerrung der Hintergrundgalaxien durch Gravitationslinsen berechnet.

Fast alle hellen Flecken sind Galaxien. Die Verteilung der blauen Dunklen Materie zeigt, dass sich der Haufen im mittleren Stadium einer Kollision zweier großer Galaxienhaufen befindet. Wenn man das Bild genau betrachtet, sieht man eine fast senkrechte Galaxie, die ungewöhnlich lang erscheint. Diese Galaxie ist in Wirklichkeit weit im Hintergrund. Ihr Bild ist durch den Gravitationslinseneffekt des massereichen Haufens gestreckt.

Zur Originalseite

Am westlichen Schleier

Im querformatigen Bild sind wild strukturierte Nebelfetzen verteilt. Sie leuchten blau und rot, was ihrer Zusammensetzung entspricht (Wasserstoff und Sauerstoff). Im Bild sind der Hexenbesen und Pickerings Dreieck zu sehen.

Bildbearbeitung: Oliver CzernetzDaten: Digitized Sky Survey (POSS-II)

Diese zarten Fasern aus komprimiertem leuchtendem Gas sind im Sternbild Schwan (Cygnus) drapiert. Sie bilden den westlichen Teil des Schleiernebels. Der Schleiernebel ist ein großer Supernovaüberrest. Das ist eine sich ausdehnende Wolke, die bei der finalen Explosion eines massereichen Sterns entstand.

Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde wahrscheinlich vor mehr als 5000 Jahren. Bei dem heftigen Ereignis entstand eine interstellare Stoßwelle. Sie pflügt durch den Weltraum. Dabei fegt die Stoßwelle interstellare Materie auf und bringt sie zum Leuchten. Die glimmenden Fasern sind eigentlich lange Wellen in einer Hülle, die wir von der Seite sehen. Die Hüllen sind in atomaren Wasserstoff (rot) und Sauerstoff (blaugrün) getrennt.

Der Schleiernebel ist auch als Cygnus-Schleife bekannt. Er ist fast 3 Grad oder 6 Vollmonddurchmesser breit. Das entspricht in der geschätzten Entfernung von 1500 Lichtjahren mehr als 70 Lichtjahren. Das breite Bild zeigt die westliche Hälfte des Schleiernebels. Hellere Teile im Schleier gelten als eigene Nebel. Dazu gehören der Hexenbesen (NGC 6960) oben und Pickerings Dreieck (NGC 6979) rechts unten. Anm.: Es ist auch als Williamina Flemings dreieckiges Büschel bekannt.

Zur Originalseite

Die Entkleidung von ESO 137-001

Links oben ist die Spiralgalaxie ESO 137-001, die durch einen Galaxienhaufen rast. Sie zieht eine blaue Spur aus aufgeheiztem, blau leuchtendem Gas hinter sich her, das vom intergalaktischen Medium hinausgedrückt wurde. Oben hinter der Galaxie sind Streifen neu entstandener blauer Sterne.

Bildcredit: NASA, ESA, CXC

Die Spiralgalaxie ESO 137-001 fliegt durch den massereichen Galaxienhaufen Abell 3627. Er ist etwa 220 Millionen Lichtjahre entfernt. Das farbige Kompositbild von Hubble und Chandra zeigt die ferne Galaxie hinter Sternen der Milchstraße im Sternbild Südliches Dreieck.

Die Galaxie rast mit fast 7 Millionen Kilometern pro Stunde dahin. Dabei wird ihr Gas und Staub abgestreift, weil der Staudruck des heißen, dünnen intergalaktischen Mediums im Haufen stärker ist als die Gravitation der Galaxie.

Im abgestreiften Material zeichnen sich kurze blaue Streifen ab, die hinterherziehen. Hubbles Daten im sichtbaren Licht zeigen, dass in den Streifen helle Sternhaufen entstanden sind. Röntgendaten von Chandra zeigen das gewaltige Ausmaß des aufgeheizten, abgestreiften Gases. Es sind die diffusen, dunkleren blauen Spuren, die nach rechts unten verlaufen. Sie sind mehr als 400.000 Lichtjahre lang.

Durch den beträchtlichen Verlust an Staub und Gas wird neue Sternbildung für diese Galaxie schwierig. Rechts neben ESO 137-001 befindet sich eine gelbliche elliptische Galaxie. Sie besitzt zu wenig Gas und Staub, um Sterne zu bilden.

Zur Originalseite