Die Moona Lisa

Versionen des Mondes zeigen Leonardo da Vincis Mona Lisa.

Bildcredit und Bildrechte: Gianni Sarcone und Marcella Giulia Pace

Beschreibung: Diese kreative visuelle Präsentation zeigt nur die natürlichen Farben des Mondes am Himmel des Planeten Erde. Die Mondscheiben wurden zu unterschiedlichen Zeiten fotografiert und sind als Bildpunkte zu einem gerahmten Bild angeordnet.

Die unterschiedlichen Farbtöne entstehen durch reflektiertes Sonnenlicht, das durch veränderliche atmosphärische Bedingungen und durch die Geometrie der Anordnung von Mond, Erde und Sonne beeinflusst wird. Die dunkelsten Mondscheiben leuchten in den Farben des Erdscheins. Eine Beschreibung des Erdscheins als Sonnenlicht, das von den Ozeanen der Erde reflektiert wird und die dunkle Mondoberfläche beleuchtet, verfasste Leonardo da Vinci vor mehr als 500 Jahren.

Wenn ihr auf Abstand vom Monitor geht oder die kleineren Versionen des Bildes betrachtet, erkennt ihr vielleicht auch da Vincis berühmtestes Kunstwerk.

Heute: Internationale Mondbeobachtungsnacht
Zur Originalseite

Das holografische Prinzip und eine Teekanne

Dreidimensionale Teekanne in einem zweidimensionalen Bild.

Bildcredit: Caltech

Beschreibung: Sicherlich seht ihr das zweidimensionale bunte Rechteck, aber seht ihr auch tiefer hinein? Wenn ihr die Farbflecke auf diesem Bild zählt, schätzt ihr vielleicht, dass dieses digitale 2D-Bild höchstens 60 (waagrecht) x 50 (senkrecht) x 256 (mögliche Farben) = 768.000 Bit an Information enthalten kann.

Das noch unbewiesene holografische Prinzip besagt jedoch, dass – anders als erwartet – ein 2D-Bild alle Information des 3D-Raums enthalten könnte, den es umschließen kann. Das Prinzip leitet sich von der Idee ab, dass die Planck-Länge – das ist jene Länge, bei der die Quantenmechanik beginnt, die klassische Gravitation zu dominieren – die eine Seite eines Bereichs ist, der nur etwa ein Bit an Information enthalten kann.

Die Grenze wurde erstmals 1933 von dem Physiker Gerard ‚t Hooft postuliert. Sie ergibt sich aus der Verallgemeinerung scheinbar weit entfernter Vermutungen, wonach die Information, die in einem Schwarzen Loch enthalten ist, nicht vom eingeschlossenen Volumen bestimmt wird, sondern vom Oberflächenbereich seines Ereignishorizonts. Der Begriff „holografisch“ stammt aus der Analogie zu einem Hologramm, bei dem dreidimensionale Bilder durch Projektion von Licht auf einem flachen Bildschirm erzeugt werden.

Aufgepasst! Manche Leute, die auf dieses Bild starren, denken eher nicht, dass es nur 768.000 Bit codiert – und auch nicht die möglichen 2563000 Bit-Permutationen – sondern sie meinen, es zeige eine dreidimensionale Teekanne.

Zur Originalseite

Sonnenfleckenhügel

Sonnenaufgang bei Sierra del Cid in Perter in Spanien.

Bildcredit und Bildrechte: Jordi Coy

Beschreibung: Rollt diese riesige orangefarbene Kugel den von Bäumen gesäumten Hügel hinunter? Nein, weil es in Wirklichkeit die Sonne ist. Der Zentralstern unseres Sonnensystems wurde zusammen mit einem prachtvoll detaillierten Vordergrund fotografiert, als er vor zwölf Tagen auf der Erde hinter einem Hügel aufging.

Auf der Sonnenscheibe waren fünf Sonnenflecken zu sehen – ziemlich viele, wenn man bedenkt, dass während des Minimums an Sonnenaktivität in den letzten Jahren an den meisten Tagen keine Flecken zu sehen waren. Wenn ihr den Hügel – Sierra del Cid in Perter (Spanien) – genau betrachtet, seht ihr nicht nur die Silhouetten von Kiefern, sondern auch die von Menschen – es sind zufällig drei Brüder des Fotografen. Die Bäume und die Brüder waren am Morgen dieses gut geplanten Einzelfotos ungefähr 3,5 Kilometer entfernt. Ein dunkler Filter dämpfte die gleißende Sonne und brachte die unteren Sonnenflecken gut zur Geltung.

Innerhalb weniger Minuten stieg die Sonne weit über den Hügel, und im Lauf einer Woche rotierten die Sonnenflecken mit der Sonne aus dem Blickfeld. Doch die abgebildete Szene ist nun zur Freude aller in der Zeit gefroren.

Zur Originalseite

Ballwurf im Sonnensystem


Videocredit und -rechte: James O’Donoghue (JAXA) und Rami Mandow (Space Australia); Text: James O’Donoghue

Beschreibung: Wo fällt ein Ball schneller: auf der Erde, auf Jupiter oder Uranus? Diese Animation zeigt einen Ball, der aus einer Höhe von einem Kilometer auf die Oberflächen berühmter Körper im Sonnensystem fällt, wobei kein Luftwiderstand angenommen wird.

Die Schwerkraft hängt von der Masse des anziehenden Objekts ab, größere Massen ziehen mit größerer Kraft nach unten. Doch die Schwerkraft hängt auch von der Entfernung zum Schwerpunkt ab, bei kürzerer Entfernung fällt der Ball schneller.

Wenn man Masse und Entfernung kombiniert, überrascht es vielleicht, dass Uranus den Ball ein bisschen langsamer anzieht als die Erde, obwohl er mehr als 14mal soviel Masse hat. Das liegt daran, dass Uranus eine viel geringere Dichte hat, daher sind die Wolkenoberflächen weiter von seinem Schwerpunkt entfernt.

Obwohl der fallende Ball immer schneller wird, würdet ihr diese Beschleunigung nicht spüren, wenn ihr auf dem Ball wärt, weil ihr euch im freien Fall befindet. Das Video zeigt, dass von den drei erwähnten Planeten ein Ball auf Jupiter sogar noch schneller fällt als auf der Erde oder Uranus.

Zur Originalseite

Explosionen des Weißen Zwergsterns RS Oph

Im Doppelsternsystem RS Ophiuchi strömt Materie von einem Roten Riesen zu einem Weißen Zwerg und löst immer wieder Nova-Explosionen aus.

Illustrationscredit und -rechte: David A. Hardy und PPARC

Beschreibung: Im Doppelsternsystem RS Ophiuchi kommt es immer wieder zu spektakulären Explosionen. Etwa alle 20 Jahre hat der Rote Riese genug Wasserstoff auf seinen Begleiter, einen Weißen Zwerg, geladen, dass auf dessen Oberfläche eine gleißende thermonukleare Explosion ausgelöst wird. Die so entstehenden Nova-Explosionen führen dazu, dass das etwa 5000 Lichtjahre entfernte RS Oph-System um ein Vielfaches heller und mit bloßem Auge sichtbar wird.

Der Rote Riese ist rechts oben abgebildet, der Weiße Zwerg befindet sich links in der Mitte der hellen Akkretionsscheibe. Während die Sterne umeinander kreisen, wandert ein Gasstrom vom Riesenstern zum Weißen Zwerg. Astronominnen vermuten, dass sich irgendwann in den nächsten 100.000 Jahren genug Materie auf dem Weißen Zwerg angesammelt hat, dass er die Chandrasekhar-Grenze überschreitet, was eine viel mächtigere und endgültige Explosion auslöst, die als Supernova bekannt ist. Anfang des Monats wurde bei RS Oph eine neuerliche helle NovaExplosion beobachtet.

Zur Originalseite

Der gemalte Saturnmond Iapetus in 3D


Bildcredit: NASA, ESA, JPL, SSI, Cassini Imaging Team; 3D-Berechnung: VTAD der NASA

Beschreibung: Was ist mit dem Saturnmond Iapetus passiert? Weite Bereiche dieser seltsamen Welt sind dunkelbraun, andere hingegen strahlend weiß. Die Zusammensetzung des dunklen Materials ist unbekannt, doch Infrarotspektren lassen vermuten, dass es möglicherweise eine dunkle Form von Kohlenstoff enthält. Iapetus hat auch einen ungewöhnlichen Äquatorwall, der ihn wie eine Walnuss aussehen lässt.

Um diesen scheinbar bemalten Mond besser zu verstehen, führte die NASA im Jahr 2007 die Roboter-Raumsonde Cassini, die damals Saturn umkreiste, bis auf weniger als 2000 Kilometer an ihn heran.

Iapetus ist hier dreidimensional abgebildet. Ein riesiger Einschlagkrater im Süden umfasst gewaltige 450 Kilometer und und überlagert offenbar einen älteren Krater von ähnlicher Größe. Das dunkle Material bedeckt zunehmend den östlichsten Teil von Iapetus und verdunkelt Krater und Hochländer gleichermaßen.

Bei näherer Betrachtung zeigt sich, dass die dunkle Beschichtung in der Regel zum Äquator des Mondes zeigt und weniger als einen Meter dick ist. Eine führende Hypothese besagt, dass der dunkle Auftrag großteils aus Schmutz besteht, der übrig bleibt, wenn das relativ warme, schmutzige Eis sublimiert. Eine erste Schicht aus dunklem Material könnte durch die Ablagerung von Trümmern anderer Monde stammen, die bei Meteoriteneinschlägen freigesetzt wurden.

Zur Originalseite

Simulation: Entstehung der ersten Sterne


Videocredit: Harley Katz (U. Oxford) et al.

Beschreibung: Wie entstanden die ersten Sterne? Um das herauszufinden, wurde die Computersimulation SPHINX für Sternbildung im sehr frühen Universum erstellt. Einige der Ergebnisse sind in diesem Video dargestellt. Die Zeit seit dem Urknall wird links oben in Millionen Jahre angezeigt.

Sogar 100 Millionen Jahre nach dem Urknall war die Materie im Kosmos zu gleichmäßig verteilt, als dass Sterne hätten entstehen können. Außer der Hintergrundstrahlung ist das Universum dunkel.

Bald beginnen leichte Materieklumpen mit viel Wasserstoff zu ersten Sternen zu verschmelzen. In diesem Zeitraffervideo steht violett für Gas, weiß für Licht und Gold für Strahlung, die so energiereich ist, dass sie Wasserstoff ionisiert und in geladene Elektronen und Protonen zerlegt. Die goldfarbenen Regionen zeigen auch die massereichsten Sterne, die als mächtige Supernovae enden. Der eingeschobene Kreis betont eine Zentralregion, aus der eine Galaxie entsteht. Die Simulation läuft, bis das Universum etwa 550 Millionen Jahre alt ist.

Um die Genauigkeit der SPHINX-Simulationen und die zugrunde liegenden Annahmen zu beurteilen, werden die Ergebnisse nicht nur mit aktuellen detailreichen Beobachtungen verglichen, sondern auch mit künftigen direkteren Beobachtungen des frühen Universums verglichen, die mit dem noch in Bau befindlichen NASA-Weltraumteleskop James Webb geplant sind.

Zur Originalseite

Papermoon-Sonnenfinsternis

Dieses fantastische Bild vom Sonnenuntergang in Xilin Gol in der Inneren Mongolei in China zeigt Sonne und Mond bei der partiellen Sonnenfinsternis.

Bildcredit und Bildrechte: Wang Letian (Augen bei Nacht)

Beschreibung: Es erinnert an einen Papiermond, der an einer gemalten Sonne vorbei segelt. Doch es sind keine Kartonwolken. Und es ist kein Fantasiebild. Dieses Bild eines orangefarbenen Himmels ist echt – es ist ein digitales Komposit aus zwei Aufnahmen der Sonnenfinsternis, die Anfang des Monats stattfand. Die erste Aufnahme wurde mit einem gewöhnlichen Teleskop gemacht, das die überbelichtete Sonne und den unterbelichteten Mond erfasste. Das zweite Bild wurde mit einem Sonnenteleskop fotografiert, um Details der Chromosphäre der Sonne im Hintergrund zu zeigen.

Die leinwandähnliche Struktur der Sonne entstand durch die Abbildung in einem besonderen Rotton, der von Wasserstoff abgestrahlt wird. Am Sonnenrand seht ihr mehrere Protuberanzen. Das Bild wurde kurz vor Sonnenuntergang in Xilin Gol in der Inneren Mongolei in China fotografiert. Die Idee, dass der Mond aus dichtem Gestein, die Sonne aus heißem Gas und Wolken aus schwebenden Wasser- und Eiströpfchen bestehen, ist ebenfalls keine Fantasie.

Zur Originalseite