Animation: Perseïden-Meteoritenstrom

Visualisierungs-Credit: Ian Webster; Daten: NASA, CAMS, Peter Jenniskens (SETI-Institut)

Woher stammen die Perseïden-Sternschnuppen? Die Perseïden-Meteoroiden bestehen überwiegend aus kleinen Gesteinspartikeln. Sie wurden ursprünglich vom Kometen Swift-Tuttle abgegeben und folgen weiterhin der Umlaufbahn dieses Kometen, während sie sich langsam zerstreuen.

Die hier gezeigte Animation zeigt den gesamten Schlauch aus Meteoroiden auf seiner Umlaufbahn um unsere Sonne. Wenn sich die Erde wie jedes Jahr diesem Schlauch nähert, kommt es zum Perseïden-Meteorstrom.

Die in der Animation hell hervorgehobenen Kometenüberbleibsel sind normalerweise so lichtschwach, dass sie praktisch nicht nachweisbar sind. Nur ein kleiner Teil dieser Partikel wird in die Erdatmosphäre eindringen, sich dabei aufheizen und sich in einer Leuchterscheinung auflösen.

Heute und in den kommenden Nächten ist der Himmel für die Beobachtung der Perseïden und anderer aktiver Meteorströme besonders gut geeignet, da der zunehmende Halbmond nach Mitternacht nicht mehr am Himmel steht.

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995, deutsch ab 2007)

Zur Originalseite

Der höhenverstärkte Mond

Die Mondkugel ist mit stark überhöhtem Höhenprofil dargestellt, die Farben sind ebenfalls verstärkt und zeigen die Zusammensetzung der Regionen. © Ildar Ibatullin

Bildcredit: Daten: NASA, Lunar Orbiter Laser Altimeter; Bild und Bearbeitung: Ildar Ibatulin

Unser Mond hat nicht wirklich so große Krater. Der Erdmond weist von Natur aus nicht diese stachelige Struktur auf, und seine Farben sind subtiler. Aber diese digitale Kreation basiert auf der Realität.

Das hier gezeigte Bild ist ein digitales Komposit aus einem guten Mondbild und Daten zur Oberflächenhöhe, die von der NASA-Mission LOLA (Lunar Orbiter Laser Altimeter) stammen – und dann zum besseren Verständnis überhöht wurden.

Die digitalen Verbesserungen heben zum Beispiel Hochebenen hervor und zeigen Krater deutlicher, die den enormen Beschuss unseres Mondes während seiner 4,6 Milliarden Jahre dauernden Geschichte veranschaulichen. Die dunklen Gebiete, Maria genannt, haben weniger Krater und waren einst Meere aus geschmolzener Lava.

Außerdem sind die Farben des Bildes verändert und übertrieben, obwohl sie auf der tatsächlichen Zusammensetzung des Mondes basieren. Ein blauer Farbton deutet auf eine eisenreiche Region hin, während orange auf einen leichten Überschuss an Aluminium hinweist.

Obwohl der Erdmond schon seit Milliarden von Jahren dieselbe Seite zeigt, ermöglicht der Menschheit erst moderne Technologie, viel mehr über ihn zu erfahren – und darüber, wie er die Erde beeinflusst.

Zur Originalseite

Gegendämmerungsstrahlen beim Planetenfest

Das Bild zeigt einen Park mit vielen Menschen, in dem riesige Kugeln aufgestellt sind, sie repräsentieren Sonne, Erde, Mond und den Sternenhimmel. Über einem Schloss im Hintergrund auf einem Hügel laufen rosarote Gegendämmerungsstrahlen über der Festung Špilberk zusammen.

Bildcredit und Bildrechte: Pavel Gabzdyl

Einige Menschen erlebten es, wie sich diese subtilen Licht- und Schattenbänder über den Himmel zogen, als die Sonne am 11. Juli unterging. Die auch als Gegendämmerungsstrahlen bekannten Bänder entstehen, wenn eine große Wolkenbank in der Nähe des westlichen Horizonts bei Sonnenuntergang lange Schatten durch die Atmosphäre wirft. Aufgrund der Kameraperspektive scheinen die Licht- und Schattenbänder zum östlichen (gegenüberliegenden) Horizont hin zusammenzulaufen, und zwar an einem Punkt direkt über einer Burg nahe Brünn (Tschechien) aus dem 14. Jahrhundert.

Im Vordergrund genießen die Bewohner des Planeten Erde das jährliche Planetenfestival im Park unterhalb der Sternwarte und des Planetariums von Brünn. Während Dämmerungsstrahlen und Gegendämmerungsstrahlen ein relativ häufiges atmosphärisches Phänomen sind, gibt es die aufblasbaren Kugeln mit einem Durchmesser von 10 Metern, die Objekte des Sonnensystems darstellen, auf dem Planeten Erde viel seltener zu sehen.

Zur Originalseite

Exoplaneten-Zoo: Andere Sterne

Wie Perlen sind verschieden große Exoplaneten verteilt. Links sind bräunliche Planeten, zur Mitte hin sind hellblau bis dunkelblaue Planeten, und rechts sind rote und orangefarbene Himmelskörper.

Illustrationscredit und Bildrechte: Martin Vargic, Halcyon Maps

Haben andere Sterne Planeten wie unsere Sonne? Sicherlich. Dafür gibt es viele Hinweise. Die Gravitation kreisender Exoplaneten erzeugt leichte Sternwackler. Andere Planeten wandern vor Sternen vorbei und trüben sie.

Bisher wurden insgesamt mehr als 5500 Exoplaneten entdeckt. Tausende davon fanden die Weltraummissionen Kepler und TESS der NASA. Mehr als 100 wurden mit dem erdgebundenen Instrument HARPS der ESO entdeckt.

Diese Illustration zeigt eine Vermutung, wie manche dieser Exoplaneten wohl aussehen. In der Mitte sind neptunartige Planeten verteilt. Ihre Atmosphären enthalten vielleicht Methan, das blaues Licht streut. Daher sind sie blau. An den Seiten des Bildes befinden sich jupiterähnliche Planeten. Sie sind hellbraun und rot, weil die Gase in ihren Atmosphären wahrscheinlich kleine Mengen Kohlenstoff enthalten. Dazwischen sind viele erdähnliche Gesteinsplaneten mit unterschiedlichen Farben verteilt.

Je mehr Exoplaneten entdeckt werden, desto besser versteht die Menschheit, wie häufig erdähnliche Planeten sind und wie häufig es Leben im Universum geben könnte.

Zur Originalseite

Zeitspirale

Die künstlerisch gestaltete Grafik zeigt detailreich die Entwicklung von allem ab dem Urknall bis hin zu mehrzelligem Leben, Säugetieren und Menschen.

Illustrationscredit: Pablo Carlos Budassi via Wikipedia

Was ist seit dem Beginn des Universums geschehen? Die hier abgebildete Zeitspirale zeigt einige der bemerkenswerten Höhepunkte.

Im Zentrum der Spirale befindet sich der Urknall, wo die Zeit, wie wir sie kennen, vor etwa 13,8 Milliarden Jahren ihren Anfang nahm. Die ersten Atome bildeten sich, daraus entstanden die ersten Sterne und schließlich aus Sternen und Gas die Galaxien. Das alles geschah in wenigen Milliarden Jahren. Vor ca. 4,6 Milliarden Jahren entstand unsere Sonne und kurz danach die Erde.

Das Leben auf der Erde begann vor ungefähr 3,8 Milliarden Jahren. Zellen und schließlich Fotosynthese folgten in der nächsten Milliarde Jahren. Vor etwa 1,7 Milliarden Jahren begann mehrzelliges Leben auf der Erde zu gedeihen. Erst seit 500 Millionen Jahren schwimmen Fische auf unserem Planeten. Säugetiere eroberten vor etwa 200 Millionen Jahren das Land.

Die Entwicklung zum Menschen nahm vor etwa 6 Millionen Jahren ihren Anfang – Menschen, die schließlich vor gerade mal 10.000 Jahren die ersten Städte bauten. Die illustrierte Zeitspirale endet hier. Doch vielleicht sollte man noch hinzufügen, dass vor nur 75 Jahren der Mensch die Raumfahrt erfand und in den letzten paar Jahren künstliche Intelligenz immer mehr in den Mittelpunkt rückt.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Animation: Schwarzes Loch vernichtet Stern

Video-Illustrationscredit: DESY, Labor für Wissenschaftskommunikation

Was passiert, wenn ein Stern einem Schwarzen Loch zu nahe kommt? Das Schwarze Loch kann ihn zerreißen – aber wie? Nicht seine starke Anziehungskraft ist das Problem, sondern der Unterschied der Gravitationswirkung an verschiedenen Seiten des Sterns.

Das hier gezeigte animierte Video illustiert diese Zerreißprobe: Zuerst sieht man einen Stern, der sich einem Schwarzen Loch nähert. Während seine Umlaufgeschwindigkeit ansteigt, wird die äußere Atmosphäre des Sterns bei der größten Annäherung abgerissen.

Ein großer Anteil der Sternatmosphäre entweicht in die Tiefen des Alls, aber ein anderer Anteil kreist weiterhin um das Schwarze Loch und bildet eine Akkretionsscheibe.

Dorthin führt uns die Animation im Folgenden. Während wir uns zum Schwarzen Loch umsehen, nähern wir uns der Akkretionsscheibe. Aufgrund der seltsamen visuellen Effekten von Gravitationslinsen kann man sogar die Rückseite der Akkretionsscheibe sehen. Schließlich schauen wir entlang der Jets, die entlang der Rotationsachse ausgestoßen werden. Modellrechnungen der theoretischen Astrophysik zeigen, dass diese Jets nicht nur hochenergetisches Gas auswerfen, sondern auch hochenergetische Neutrinos. Eins davon könnte kürzlich auf der Erde gesehen worden sein.

Beinahe Hyperraum: APOD-Zufallsgenerator

Heute vor 29 Jahren wurde das erste APOD veröffentlicht

Zur Originalseite

Wie man ein Licht am Himmel bestimmt

Grafik zur Bestimmung von Lichtern am Himmel

Illustrationscredit und Bildrechte: HK (The League of Lost Causes)

Was ist dieses Licht am Himmel? Vielleicht ist das eine der häufigsten Fragen, die in der Menschheit gestellt werden. Die Antwort kann oft mit wenigen schnellen Beobachtungen gegeben werden, die typischerweise zuerst abgefragt werden, wenn sie in Planetarien und Sternwarten an Fachleute gerichtet werden, z.B.:

Blickt es und bewegt es sich? Falls ja – und insbesondere, wenn die Beobachtung nahe einer Großstadt gemacht wurde – dann war es wahrscheinlich ein Flugzeug. Flugzeuge sind zahlreich und nur wenige Sterne und Satelliten sind hell genug, um durch das Rauschen des künstlichen Lichts (Lichtverschmutzung) gesehen zu werden.

Falls nicht, beziehungsweise, falls Sie nicht in Großstadtnähe wohnen, kann das helle Lichtlein auch ein Planet sein, z.B. Venus oder Mars. Erstere ist an mehr oder weniger nahe an den Horizont gebunden: sie kann nur in der Abend- oder Morgendämmerung beobachtet werden.

Manchmal fällt es auf den ersten Blick schwer, ein tieffliegendes entferntes Flugzeug in Horizontnähe von eine hellen Planeten zu unterscheiden. Das wird jedoch durch die Beobachtung innerhalb weniger Minuten klar, weil sich das Flugzeug bewegt.

Sind Sie immer noch unsicher?

Dann ermöglicht das heutige Diagramm eine mitunter humorvolle, aber weitgehend zutreffende Einschätzung. Enthusiastische Himmelsbeobachter werden höchstwahrscheinlich Ergänzungen oder Korrekturen haben: Sie sind aufgefordert und ermutigt, diese in höflicher Form beizutragen.

Zur Originalseite

Mondkorona über Paris

Links ragt der gelb beleuchtete Eiffelturm hinter einer Brücke auf, oben schießt scheinbar ein blauer Strahl zum Mond, der von einem blau leuchtenden Hof mit rötlichem Ring umgeben ist.

Bildcredit und Bildrechte: Valter Binotto

Warum sehen wir einen Mond bei Bewölkung oft bunt? Der Effekt wird Mondkorona genannt und wird durch die quantenmechanische Beugung von Licht um einzelne Wassertröpfchen in den fast unsichtbaren Wolkenschicht hervorgerufen.

Da verschiedenfarbiges Licht unterschiedliche Wellenlängen hat, wird jede Farbe anders gebeugt.

Mondkoronae sind einer der wenigen quantenmechanischen Farbeffekte, die mit freiem Auge leicht zu beobachten sind. Sonnenkoronae sind ebenfalls häufig.

Das heutige Bild wurde im letzten Monat in Paris, Frankreich aufgenommen. Der blaue Scheinweifer des Eiffelturms beeinflusst die bunte Mondkorona nicht.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite