Fraktale Landschaft einer Steampunk-Quantenfantasie

Die dreidimensionale fraktale Landschaft im Bild ist eine reine Simulation. Sie besteht aus Kugeln und erinnert an eine Steampunk-Fantasie.

Bildcredit und Bildrechte: Jos Leys (Mathematical Imagery), Ultra Fractal

Was für eine seltsame Welt ist das? Oben ist kein realer Ort dargestellt, sondern eine rein mathematische Visualisierung der Verallgemeinerung eines Fraktals auf drei Dimensionen. Klassische Fraktaldiagramme sind meist auf zwei Dimensionen einer komplexen Zahlenebene beschränkt. Sie zeigen Zahlenbereiche, in denen iterierte Funktionen divergieren.

Kürzlich wurden Ergänzungen untersucht. Sie erweitern die fraktalen Mandelbrotmengen in die dritte Dimension. Die Ergebnisse werden als Mandelbox– und Mandelzwiebelmengen bezeichnet. Häufig sind es visuell faszinierende Kreationen virtueller Welten mit grenzenlosen Details. Durch manche kann man sogar hindurchfliegen.

Oben seht ihr so eine mathematische Fantasie. Manche erinnert sie vielleicht an eine Art quantenmechanische Steampunk-Landschaft.

Dank an @sternengeist und @Vilinthril für Hilfe bei der Übersetzung!

Zur Originalseite

Der kälteste Ort der Erde

Die Grafik zeigt die Antarktis. Darauf sind Rekordtemperaturen markiert.

Bildcredit: Ted Scambos (National Snow and Ice Data Center) et al., Landsat 8, USGS, NASA

Wie kalt kann es auf der Erde werden? Im Inneren der Antarktis wurde eine Rekord-Tiefsttemperatur von -93.2 °C (-135.8 °F) gemessen. Das ist etwa 25 °C (45 °F) weniger als die tiefsten Temperaturen an sämtlichen Orten, wo Menschen dauerhaft leben.

Diese Tiefsttemperatur wurde im August 2010 erreicht. Es war im arktischen Winter. Forschenden sichteten dafür Jahrzehnte an Klimadaten, die von Satelliten in der Erdumlaufbahn gemessen wurden. Die kältesten Punkte waren in der Nähe von Gipfeln zu finden, weil höher gelegene Luft allgemein kälter ist. Doch die Orte mit den tiefsten Temperaturen befanden sich in Bodensenken neben Gipfeln, weil sich dort relativ dichte, kalte Luft ansammelte, die auf dem gefrorenen Boden weiter abkühlte.

Der Sommer ist eine viel bessere Zeit, um die Antarktis zu besuchen, da sich einige Regionen auf bis zu 15 °C (59 °F) aufwärmen.

Zur Originalseite

Schwere Strahlen eines Schwarzen Lochs in 4U1630-47

Das Bild ist eine Illustration des Sternsystems 4U1630-47. Links in der Mitte ist eine rotierende Scheibe, außen rot, innen gelb. Nach oben und unten schießt senkrecht zur Scheibe ein Strahl heraus. Rechts ist ein großer, blauweißer Stern, von dem Materie zur Akkretionsscheibe fließt.

Illustrationscredit: NASA, CXC, M. Weiss

Woraus bestehen die Strahlen eines Schwarzen Lochs? Viele Schwarze Löcher in Sternsystemen sind vermutlich von Scheiben umgeben. Sie bestehen aus Gas und Plasma, das durch Gravitation von einem nahen Begleitstern abgesaugt wird. Ein Teil dieser Materie wird vom Sternsystem als mächtiger Strahl ausgestoßen, nachdem sie sich dem Schwarzen Loch genähert hat. An den Polen des rotierenden Schwarzen Lochs strömt ein Strahl nach oben und einer nach unten.

Es gibt aktuelle Hinweise, dass diese Strahlen nicht nur aus Elektronen und Protonen bestehen, sondern auch aus den Kernen schwerer Elemente wie Eisen und Nickel. Die Entdeckung wurde im System 4U1630-47 gemacht, und zwar mit einer kompakten Anordnung an Radioteleskopen im Osten Australiens, die von CSIRO betrieben wird, sowie mit dem Satelliten XMM-Newton der Europäischen Weltraumorganisation in der Erdumlaufbahn.

Das Sternsystem 4U1630-47 ist oben künstlerisch dargestellt. Rechts ragt ein großer blauer Stern ins Bild. Von einem Schwarzen Loch im Zentrum der Akkretionsscheibe links strömen Strahlen nach oben und unten. Das Sternsystem 4U1630-47 enthält vermutlich nur ein kleines Schwarzes Loch mit wenigen Sonnenmassen. Trotzdem ist die Schlussfolgerung aus dieser Beobachtung bedeutsam, nämlich dass auch größere Schwarze Löcher Strahlen mit massereichen Kernen ins Universum ausstoßen.

Klick in den Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Kepler-78b: erdgroßer Planet entdeckt

Die Illustration zeigt links die Erde in grünen und blauen Farbtönen. Kepler 78b rechts mit 1,8 Erdmassen leuchtet gelb und rot.

Illustrationscredit: David A. Aguilar (CfA)

Kepler-78b ist nur wenig größer als die Erde, doch eigentlich sollte er nicht existieren. Seine Größe ist ungewöhnlich, und zwar in dem Sinn, dass seine Größe jener der Erde am nächsten kommt.

Auch sein Orbit ist einzigartig in Bezug darauf, dass er einen sonnenähnlichen Stern umkreist. Diesem Stern kommt er 40-mal näher als der Planet Merkur der Sonne. In so geringer Entfernung ist sogar Gestein flüssig. Modelle der Planetenentstehung prognostizieren, dass auf einer so engen Bahn kein Planet entstehen kann, und Modellen der Planetenentwicklung zufolge sollte die Umlaufbahn von Kepler-78b absinken. Daher ist der Planet dem Untergang geweiht. Er verschmilzt vielleicht mit seinem Zentralstern.

Die Illustration zeigt Kepler-78b im Vergleich zur Erde. Der Planet wurde mit der Raumsonde Kepler im Erdorbit durch Bedeckung entdeckt. HARPS-Nord untersucht ihn weiterhin hinsichtlich leichter Schwankungen. HARPS-Nord ist ein Spektrograf am 3,6-Meter-Teleskop des Telescopio Nazionale Galileo auf den Kanarischen Inseln.

Neue Schätzung: 20% der sonnenähnlichen Sterne haben einen bewohnbaren erdgroßen Planeten

Zur Originalseite

NGC 7841: Der Rauchnebel im Frustriaus

Vor einem gesprenkelten Hintergrund ringeln sich Rauchwolken eines frustrierten Astrofotografen.

Bildcredit und Bildrechte: Göran Strand

NGC 7841 ist vielleicht als Rauchnebel bekannt. Er befindet sich im neuzeitlichen Sternbild Frustriaus, der frustrierten Astrofotografin. Der Rauchnebel ist nur wenige Licht-Nanosekunden vom Planeten Erde entfernt. Er ist kein Supernovarest in der Ebene unserer Milchstraße, der sich ausdehnt, obwohl er so aussieht. Vielmehr entstand er, indem aufsteigender Rauch mit Blitz fotografiert wurde.

Das scheinbar reichhaltige Sternfeld sind Wassertröpfchen. Ein Astrofotograf, der wegen der jüngsten Schlechtwetterperiode in Schweden unruhig wurde, verteilte sie mit einer Pflanzensprühflasche. Dieser nicht ganz kosmische Schnappschuss wurde mit drei externen Blitzlichtern fotografiert.

Zur Originalseite

Der große Komet von 1680 über Rotterdam

Das Gemälde zeigt einen Kometen mit einem sehr langen dünnen Schweif am roten Himmel über Rotterdam im Jahr 1680. Vor einem Gewässer steht eine Menschenmenge, mehrere Personen halten einen Jakobsstab.

Illustrationscredit: Lieve Verschuier

Gab es schon einmal einen Kometen wie ISON? Zwei Kometen sehen zwar niemals genau gleich aus, aber einer hatte wohl große Ähnlichkeit mit ISON. Es ist Komet Kirch, der große Komet 1680. Wie der näherkommende Komet ISON war auch Komet Kirch ein heller Sonnenstreifer. Er kam der Sonnenoberfläche sehr nahe.

Doch keiner der beiden gehört zur häufigsten Gruppe der Sonnenstreifer, nämlich der Kreutz-Gruppe. Diese besteht aus den Überresten eines Kometen, der vor Hunderten Jahren in der Nähe der Sonne zerbrach.

Das Gemälde von Lieve Versheier zeigt den langen Schweif des Kometen Kirch. Die Menschenmenge im Vordergrund beobachtet den Kometen im niederländischen Rotterdam. Einige Leute halten einen Jakobsstab. Dieses Winkelmessgerät ist ein Vorläufer des Sextanten.

Niemand weiß, wie sich Komet ISON entwickelt. Ähnlich wie Komet Kirch erreicht er seine größte Helligkeit wohl dann, wenn er der Sonne sehr nahe kommt. Bei ISON sind das die letzten Tage im November.

Galerie: Helle Kometen 2013

Zur Originalseite

Nördlicher Himmelsbaum

Zwischen den Ästen eines Baums befindet sich der Polarstern, daher ist der Baum von konzentrischen Strichspuren eingerahmt.

Bildcredit und Bildrechte: Jerónimo Losada

Wenn ihr auf diesen prächtigen Baum klettert, könnt ihr scheinbar nach oben greifen und den Himmelsnordpol in der Mitte der Strichspurbögen berühren. Das gut arrangierte Bild entstand in der Nacht des 5. Oktober. Während fast 2 Stunden entstand eine Serie je 30 Sekunden belichteter Aufnahmen. Die Einzelbilder wurden mit einer Digitalkamera aufgenommen, die bei Almadén de la Plata in der südspanischen Provinz Sevilla auf der Erde auf einem Stativ fixiert war.

Die zierlichen Strichspuren zeigen die tägliche Rotation der Erde um ihre Achse. Die Verlängerung der Rotationsachse führt am Nachthimmel zur Mitte der konzentrischen Bögen. Auf der Nordhalbkugel steht passenderweise der helle Stern Polaris nahe beim Himmelsnordpol. Er bildet die kurze helle Spur in der Mitte zwischen den belaubten Zweigen.

Zur Originalseite

Die Lokale Flocke

Die Grafik zeigt die Verteilung und Flussrichtung des Interstellaren Mediums ISM in der Umgebung des Sonnensystems.

Illustrationscredit: NASA, Goddard, Adler, U. Chicago, Wesleyan

Sterne sind nicht alleine. Etwa 10 Prozent der sichtbaren Materie in der Scheibe unserer Milchstraße besteht aus Gas. Es wird als interstellares Medium (ISM) bezeichnet. Das ISM ist nicht gleichmäßig verteilt. Sogar in der Nähe unserer Sonne schwankt seine Dichte.

Das lokale interstellare Medium ist so dünn und strahlt so wenig Licht ab, dass es ziemlich schwierig ist, es aufzuspüren. Das Gas besteht hauptsächlich aus Wasserstoff. Es absorbiert jedoch einige sehr spezifische Farben. Diese Absorption ist im Licht der nahen Sterne erkennbar.

Die Grafik zeigt eine Arbeitskarte des lokalen interstellaren Mediums (ISM) im Umkreis von 20 Lichtjahren. Sie basiert auf aktuellen Beobachtungen und dem Nachweis von Teilchen des Interstellar Boundary Exporer (IBEX). IBEX befindet sich in der Erdumlaufbahn. Diese Beobachtungen zeigen, dass sich unsere Sonne durch die Lokale Interstellare Flocke bewegt. Diese Wolke strömt von einer Sternbildungsregion aus, die als Scorpius-Centaurus-Assoziation bezeichnet wird. Unsere Sonne könnte die Lokale Wolke in den nächsten 10.000 Jahre verlassen. Die Lokale Wolke wird auch als Lokale Flocke bezeichnet.

Vieles im Zusammenhang mit dem lokalen ISM ist nicht bekannt. Dazu zählen Details zu seiner Verteilung, seinem Ursprung und seinem Einfluss auf Sonne und Erde. Überraschenderweise lassen neueste Messungen der Raumsonde IBEX vermuten, dass sich die Richtung, aus der neutrale interstellare Teilchen durch unser Sonnensystem fließen, verändert.

Zur Originalseite