Ferne Neutrinos unter dem Eis der Antarktis aufgespürt

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: IceCube Collaboration, U. Wisconsin, NSF

Beschreibung: Woher kommen diese Neutrinos? Das IceCube-Neutrino-Observatorium in der Nähe des Südpols der Erde begann, fast unsichtbare Teilchen mit sehr hoher Energie aufzuspüren. Diese kaum wechselwirkenden Neutrinos durchdringen kurz vor ihrer Ortung fast die ganze Erde, und es ist ein Rätsel, woher sie stammen. Das antarktische Labor IceCube ist hier zusammen mit einer Skizze abgebildet, auf der lange Detektorstränge zu sehen sind, die in das kristallklare Eis darunter eingefroren sind. Mögliche Quellen dieser kosmischen Neutrinos sind die stürmischen Nahbereiche sehr massereicher Schwarzer Löcher in den Zentren ferner Galaxien sowie gigantische Sternexplosionen, die ihren Höhepunkt als Supernovae oder Gammablitze im fernen Universum erreichen. Wenn IceCube künftig immer mehr energiereiche Neutrinos aufspürt, könnten Übereinstimmungen mit bekannten Objekten dieses kosmische Rätsel lösen – vielleicht aber werden wir es nie erfahren.

Zur Originalseite

An der Auflösungsgrenze

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Yuri Beletsky (Las Campanas Observatory, Carnegie Institution)

Beschreibung: Wollten Sie schon einmal durch das Okular eines großen Weltraumteleskops sehen? Dabei hätten Sie einen scharfen Ausblick mit begrenzter Auflösung. Befreit von der atmosphärischen Unschärfe, die erdgebundene Beobachter plagt, wäre die Grenze der Winkelauflösung dieser Ansicht nur durch die Wellenlänge des Lichts und den Durchmesser von Teleskoplinse oder -spiegel festgelegt – je größer der Durchmesser, desto schärfer das Bild. Doch bei diesem erdgebundenen Schnappschuss wird ein neues aktives adaptives Optiksystem (MagAO) eingesetzt, um die atmosphärische Weichzeichnung bei visueller Beobachtung des berühmten Doppelsternsystems Alpha Centauri aufzuheben. Beim Test des Systems am Okular des 6,5 Meter großen Magellan-Clay-Teleskops am Las-Campanas-Observatorium betrachtet der Astronom Laird Close eine historische, nur durch die Auflösung begrenzte Ansicht (Einschub) und die deutliche visuelle Trennung des engen Doppelsternsystems … ohne in den niedrigen Erdorbit zu reisen.

Zur Originalseite

Die Potsdamer Schwerekartoffel

Das Bild zeigt eine deformierte Kugel mit den Kontinenten, vorne liegt Afrika. Die Meere sind farbcodiert von rot über orange und gelb bis blau.

Bildcredit: CHAMP, GRACE, GFZ, NASA, DLR

Warum ist das Erdschwerefeld an manchem Orten auf der Erde stärker als an anderen? Manchmal ist der Grund dafür nicht bekannt. Um die Erdoberfläche besser zu verstehen, machten die Satelliten GRACE und CHAMP genaue Messungen. Daraus wurde eine genaue Karte vom Schwerefeld der Erde erstellt.

Nun befindet sich ein Zentrum der Untersuchung dieser Daten in der deutschen Stadt Potsdam. Außerdem sieht die Erde im Ergebnis wie eine Kartoffel aus. Daher wurde das Geoid Potsdamer Schwerekartoffel genannt.

Hohe Gebiete sind auf der Karte rot gefärbt. Sie zeigen Orte, an denen die Gravitation etwas stärker ist als sonst. In blauen Regionen ist die Gravitation etwas geringer als anderswo. Viele Beulen und Täler auf der Potsdamer Gravitationskartoffel gehen mit Strukturen auf der Oberfläche einher. Dazu gehören der Nord- und Mittelatlantische Rücken oder der Himalaja.

An anderen Orten erkennt man keinen Zusammenhang. Diese Strukturen könnten Stellen mit ungewöhnlich hoher oder geringer Dichte unter der Oberfläche sein.

Solche Karten helfen, die Veränderung der Erdoberfläche zu kalibrieren. Man kann so Änderungen der Meeresströmungen und das Schmelzen der Gletscher kartieren. Diese Karte wurde 2005 erstellt. Es gibt auch eine aktuellere, genauere Gravitationskarte der Erde aus dem Jahr 2011.

Zur Originalseite

Ein Vollkreis-Regenbogen über Australien

Vor einem Strand mit einer Stadt im Hintergrund leuchtet ein vollständiger 360-Grad-Regenbogen mit einem zweiten Regenbogen außen herum.

Bildcredit und Bildrechte: Colin Leonhardt (Birdseye View Photography)

Habt ihr schon einmal einen ganzen Regenbogen gesehen? Am Boden ist meist nur der obere Teil eines sichtbar. Doch in der Luft kann man einen ganzen 360-Grad-Kreis sehen. Dieser Vollkreis-Regenbogen wurde letztes Jahr über Cottesloe Beach bei Perth (Australien) in einem fliegenden Hubschrauber fotografiert. Er flog zwischen dem Sonnenuntergang und einem Platzregen.

Ein 84-Grad-Regenbogen ist vom Standpunkt des Beobachters abhängig. Es entsteht durch die Reflexion von Sonnenlicht in den Regentropfen. Dieser 84-Grad-Bogen folgte dem Hubschrauber etwa 5 Kilometer weit. Um den ersten verlief ein blasserer zweiter Regenbogen. Seine Farben waren umgekehrt angeordnet.

APOD-Astrofotografie: Führte eure Arbeit schon einmal zu einer wissenschaftlichen Entdeckung?

Zur Originalseite

Laniakea: Unser Heimat-Supergalaxienhaufen

Vor einem türkis-blau gefleckten Hintergrund ist eine Struktur aus weißen Linien, die alle zu zwei sehr dicken Strichen zusammenlaufen. Außen um die Struktur verläuft eine unregelmäßige orangefarbene geschlossene Linie.

Bildcredit: R. Brent Tully (U. Hawaii) et al., SDvision, DP, CEA/Saclay

Es ist nicht bloß eine der größten Strukturen, wie wir kennen. Es ist unsere Heimat. Der Supergalaxienhaufen Laniakea wurde kürzlich beschrieben. Er enthält Tausende Galaxien. Dazu gehören unsere Milchstraße, die Lokale Gruppe und der nahe Virgo-Galaxienhaufen.

Die Visualisierung des kolossalen Superhaufens wurde mit Computern generiert. Grüne Bereiche enthalten viele Galaxien. Sie sind als weiße Punkte dargestellt. Die weißen Linien zeigen die Bewegung zum Zentrum des Superhaufens. Der Umriss von Laniakea ist orange dargestellt. Der blaue Punkt zeigt unsere Position. Außerhalb der orangefarbenen Line fließen die Galaxien zu anderen Ansammlungen.

Der Superhaufen Laniakea ist etwa 500 Millionen Lichtjahre groß. Er enthält ungefähr die 100.000-fache Masse unserer Milchstraße. Die Entdecker von Laniakea gaben ihm den Namen. Er ist hawaiisch und bedeutet „unermesslicher Himmel“.

Zur Originalseite

Holometer: Ein Mikroskop in Zeit und Raum

Das Bild zeigt einen Spiegel des Holometers, das sich am Fermi National Accelerator Laboratory (Fermilab) befindet. Es soll herausfinden, ob es einen Grundtyp holografischer Schwankungen gibt.

Bildcredit: C. Hogan, Fermilab

Wie stark unterscheiden sich Raum und Zeit in einem sehr kleinen Maßstab? Im Bereich der winzigen Planck-Einheiten treten Quanteneffekte in den Vordergrund, die normalerweise nicht wahrnehmbar sind. Um diesen ungewohnten Bereich zu erforschen, nahm ein neu entwickeltes Instrument seinen Betrieb auf. Es wird als Holometer bezeichnet und befindet sich am Fermi National Accelerator Laboratory (Fermilab). Das Fermilab befindet sich in der Nähe von Chicago im US-Bundesstaat Illinois.

Das Instrument soll herausfinden, ob leichte, gleichzeitige Erschütterungen eines Spiegels in zwei Richtungen einen Grundtyp holografischer Schwankungen zutage fördern, der immer einen Mindestwert übersteigt. Oben seht ihr einen Endspiegel des Holometer-Prototyps.

Die Entdeckung eines holografischen Rauschens wäre sicherlich bahnbrechend. Doch die Abhängigkeit solcher Schwankungen von einer spezifischen Laborlängenskala würde manche Leute, die sich für die Raumzeit interessieren, überraschen.

Ein Grund dafür ist die Lorentz-Invarianz, die in Einsteins spezieller Relativitätstheorie postuliert wurde. Sie besagt, dass alle Längenskalen relativ zu einem bewegten Beobachter verkürzt erscheinen, sogar die winzige Planckskala. Das Experiment ist einzigartig. Viele warten neugierig, was dabei herauskommt.

Zur Originalseite

Saturns wirbelnde Wolkenlandschaft

Saturns Nordpol rückte 2012 ins Sonnenlicht. Hier befindet er sich an der Licht-Schatten-Grenze, dem Terminator. In der Mitte ist ein dunkelroter runder Strudel, außen herum verläuft eine sechsseitige Sturmstruktur. Rechts oben leuchten die Saturnringe in hellem Blau.

Bildcredit: Cassini-Bildgebungsteam, SSI, JPL, ESA, NASA

Die Weitwinkelkamera der Raumsonde Cassini schickte Ende 2012 ihre ersten Ansichten von Saturns hohem Norden, die von der Sonne beleuchtet wurden. Dazu gehört dieses faszinierende Falschfarbenbild vom Nordpol des Ringplaneten. Das Komposit entstand aus Bilddaten im nahen Infrarot. Die niedrigen Wolken sind rot gefärbt und hohen grün. Daher wirkt Saturns Wolkenlandschaft sehr lebhaft.

Der orkanartige Sturm am Nordpol ist in irdischen Maßstäben gewaltig tief, rot und etwa 2000 Kilometer groß. Die Wolken am äußeren Rand rasen mit mehr als 500 Kilometern pro Stunde. Der große, gelblich-grüne sechsseitigen Strahlstrom ist als Hexagon bekannt. In seinem Inneren wirbeln auch andere atmosphärische Strudel. Die Bögen der augenfälligen Ringe des Planeten leuchten in hellem Blau. Sie verlaufen rechts über den Wolkenoberflächen.

Zur Originalseite

Der Homunkulusnebel als 3D-Modell

In der Mitte ist eine Aufnahme des Homunkulusnebels, der den Stern Eta Carinae umgibt. Links und rechts davon ist ein 3D-Modell von vorne und von hinten sichtbar gezeigt. Die Modelle und die Aufnahme sind beschriftet.

Wissenschaftscredit: W. Steffen (UNAM), M. Teodoro, T.I. Madura, J.H. Groh, T.R. Gull, A. Mehner, M.F. Corcoran, A. Damineli, K. Hamaguchi; Bildcredit: NASA, Goddard Space Flight Center/SVS – Einschub: NASA, ESA, Hubble SM4 ERO Team

Falls ihr neue Modelle sucht, die ihr mit eurem 3D-Drucker drucken könnt, versucht es doch mit dem Homunkulusnebel. Die bipolare kosmische Wolke enthält viel Staub. Sie ist etwa 1 Lichtjahr groß. Für den Druck wurde sie verkleinert – auf etwa ¼ Licht-Nanosekunde, das sind 80 Millimeter.

Der Homunkulus umgibt das Doppelsternsystem Eta Carinae. Die berühmten instabilen massereichen Sterne sind etwa 7500 Lichtjahre entfernt. Sie sind in den ausgedehnten Carinanebel eingebettet. Zwischen 1838 und 1845 erfuhr Eta Carinae einen großen Ausbruch. Dabei wurde er zum zweithellsten Stern am Nachthimmel des Planeten Erde und stieß den Homunkulusnebel aus.

Der Homunkulusnebel dehnt sich immer noch aus. Dieses neue 3D-Modell entstand bei der Erforschung des Nebels am VLT-X-Shooter der Europäischen Südsternwarte ESO. Dieses Instrument kartiert die Geschwindigkeit molekularer Wasserstoffregionen durch den Staub des Nebels hindurch in hoher Auflösung. Die Aufnahme zeigt Einschnitte, Löcher und Wölbungen, sogar in den Regionen, die von Staub verdeckt und von der Erde abgewandt sind.

Es gibt immer noch gewaltige Ausbrüche auf Eta Carinae. Er könnte in den nächsten Millionen Jahren als spektakuläre Supernova explodieren.

Zur Originalseite