Komet Lemmon und die Milchstraße

Über den Meili Snow Mountains in China steigt die Milchstraße wie eine gewaltige Staubwolke auf. Rechts daneben fächert der Komet Lemmon seine Schweife auf. Nach links zeigt der blaue Ionenschweif, nach rechts der weiße Staubschweif. In der Milchstraße sind unter anderem der Lagunennebel und der Trifidnebel erkennbar.

Bildcredit und Bildrechte: Lin Zixuan (Tsinghua U.)

Wie sah Komet Lemmon aus, als er am schönsten war? Ein Beispiel ist dieses Bild. Es zeigt drei Himmelsspektakel in verschiedenen Distanzen. Das nächstgelegene davon sind die schneebedeckten Meili-Berge im chinesischen Himalaya.

Das mittlere Prachtstück ist Komet Lemmon. Anfang des Monats erreichte er seine größte Pracht. Er hat nicht nur einen weißen Staubschweif, der nach rechts zeigt, sondern auch einen blauen Ionenschweif, der vom Sonnenwind verzerrt ist und nach links zieht. Links ist die prachtvolle, weit entfernte zentrale Ebene unserer Galaxis, der Milchstraße. Sie zeigt dunklen Staub, rote Nebel und Milliarden sonnenähnlicher Sterne.

Komet C/2025 A6 (Lemmon) verblasst bereits und zieht sich ins äußere Sonnensystem zurück. Das Gebirge des Himalaya erodiert in den nächsten Milliarden Jahren allmählich. Doch die Milchstraße bleibt bestehen. Sie bildet neue Berge und Kometen – und zwar noch viele Milliarden Jahre.

Zur Originalseite

Apep: Webb zeigt ungewöhnliche Staubhüllen

Mitten im Raum sind seltsame, teils spiralförmige Staubhüllen. Die äußeren Hüllen sind dunkelrot, innen sind die Hüllen gelb-orangefarben. Ihre Regelmäßigkeit ist sehr auffällig.

Bildcredit: NASA, ESA, CSA, STScI, JWST; Forschung: Y. Han (Caltech), R. White (Macquarie U.); Bildbearbeitung: A. Pagan (STScI)

Wie entstand diese ungewöhnliche Skulptur mitten im Raum? Durch Sterne. Das seltsame System aus Wirbeln und Hüllen ist als Apep bekannt. Das James-Webb-Weltraumteleskop der NASA beobachtete das System im Jahr 2024 beispiellos genau im Infrarotlicht.

Die Beobachtungen deuten an, dass die ungewöhnliche Form von zwei massereichen Wolf-Rayet-Sternen stammt. Diese umkreisen sich alle 190 Jahre. Bei jeder Annäherung stoßen sie eine neue Hülle aus Staub und Gas aus. Die Löcher in den Hüllen entstehen vermutlich durch einen dritten Stern, der sie umkreist.

Dieser stellare Staubtanz dauert wahrscheinlich noch Hunderttausende Jahre. Er endet wohl erst, wenn einer der massereichen Sterne den Kernbrennstoff in seinem Inneren verbraucht hat. Dann explodiert er als Supernova. Das kann es auch zu einem Ausbruch an Gammastrahlen führen.

Knobelspiel: Astronomie-Puzzle des Tages

Zur Originalseite

Das Universum, das wir beobachten können

Eine kreisförnige Karte des Universums. In der Mitte steht das Sonnensystem. Um es herum radial nach außen nahe und ferne Galaxien, frühere Materie und der kosmische Mikrowellenhintergrund am äußeren Rand.

Illustrationscredit und Lizenz: Wikipedia, Pablo Carlos Budassi

Wie weit könnt ihr sehen? Das beobachtbare Universum ist alles, was ihr sehen könnt und alles, was ihr gerade jetzt sehen könntet – wenn eure Augen die gesamte Strahlung sehen könnten. Das am längsten gelaufene Licht, das wir sehen könnten, stammt aus dem kosmischen Mikrowellenhintergrund. Er entstand vor rund 13,8 Milliarden Jahren. Damals war das Universum lichtundurchlässig wie dichter Nebel. Einige Neutrinos und Gravitationswellen ums uns herum kommen aus noch größerer Entfernung. Aber die Menschheit verfügt noch nicht über die Technologie, um sie zu beobachten.

Das Bild zeigt das beobachtbare Universum. Im Bild wird der Maßstab nach außen immer kleiner. In der Mitte stehen Erde und Sonne, umgeben von unserem Sonnensystem und nahen Sternen. Um sie herum seht ihr nahe Galaxien, entfernte Galaxien, Stränge aus der ersten Materie und den kosmischen Mikrowellenhintergrund.

Kosmolog*innen gehen meist davon aus, dass unser beobachtbares Universum nur der nahe gelegene Teil des größeren gesamten Universums ist. In ihm gelten überall dieselben Gesetze der Physik. Es gibt weitere Theorien, die eher spekulativ sind. Demnach ist unser Universum Teil eines größeren Multiversums. Darin gibt es entweder andere physikalische Konstanten, oder es gelten andere Gesetze der Physik. Es könnte auch zusätzliche Dimensionen oder kleine zufällige Abweichungen von unserem normalen Universum geben.

Zur Originalseite

Ringtransit von Dione und Rhea

Der Planet Saturn ist waagrecht abgebildet, daher sind seine Ringe kaum erkennbar. Links sind die Monde Dione und Rhea als kleine Objekte erkennbar.

Bildcredit und Bildrechte: Christopher Go

Dieser scharfe Schnappschuss mit Teleskop zeigt die beiden kleinen Eismonde Dione und Rhea. Sie schweben links neben der gebänderten Planetenscheibe des Saturn und vor dem weiten Ringsystem des Saturn. Diese Szene wurde am 20. November aufgenommen. Damals waren die Saturnringe von der Erde aus gesehen fast von der Kante zu sehen.

Tatsächlich sehen wir alle 13 bis 16 Jahre von der Erde aus auf die Seite auf die Ringebene des Saturn. Dabei kommt es gleich zu einer ganzen Reihe von Querungen der Ringebene. Bei so einer Querung lässt die interplanetare Seitenansicht die dünnen Ringe verschwinden, die die sonst so hell sind. Am 23. November stehen die Saturnringe fürs Erste im kleinsten Winkel. Dann sind sie von der Erde aus gesehen am schmalsten. Danach werden sie wieder breiter.

Dione und Rhea umkreisen den Saturn alle 2,7 bzw. 4,5 Tage in der Nähe der Ringebene. Die nächste Serie von Überquerungen von Saturns Ringebene, die von der Erde aus sehen, beginnt erst wieder 2038.

Zur Originalseite

3I/ATLAS: Aussicht vom Planeten Erde

Mitten im Bild leuchtet die türkisgrüne Koma des interstellaren Kometen 3I/ATLAS. Nach rechts oben zieht ein blasser Schweif. Dahinter sind Sterne im Sternbild Jungfrau.

Bildcredit und Bildrechte: Rolando Ligustri

Am 29. Oktober erreichte der Komet 3I/ATLAS sein Perihel, das ist der sonnennächste Punkt seiner Bahn. Nun ist er auf dem Weg nach draußen.

3I/ATLAS ist erst das dritte interstellare Objekt, von dem wir wissen, dass es unser Sonnensystem durchquert hat. Diese Ansicht von der Erde zeigt seine grünliche Koma und die schwachen Schweife vor den Sternen im Sternbild Jungfrau. Die Aufnahme entstand am 14. November mit einem kleinen Teleskop.

Doch der interstellare Eindringling wird weiterhin bei einer beispiellosen Beobachtungskampagne im gesamten Sonnensystem erforscht. Raumfahrzeuge und Weltraumteleskope vom Erdorbit bis zur Marsoberfläche und darüber hinaus sind daran beteiligt.

Der Komet aus einem fremden Sternsystem wurde zwar kürzlich heller. Trotzdem braucht man immer noch ein Teleskop, um 3I/ATLAS von der Erde aus zu sehen. Er steht jetzt im November am Morgenhimmel über dem Horizont. Um den 19. Dezember erreicht er seinen erdnächsten Punkt. Dieser ist rund 270 Millionen Kilometer entfernt.

Zur Originalseite

Alnitak, Alnilam, Mintaka

Das Bild wirkt nebelverhangen. Diagonal von links unten nach rechts oben sind drei helle Sterne mit blauen Höfen angeordnet. Rechts oben sind zwei markante Objekte, der Flammennebel und der Pferdekopfnebel. Doch das ganze Bild ist von Nebeln durchzogen.

Bildcredit und Bildrechte: Aygen Erkaslan

Alnitak, Alnilam, und Mintaka heißen die drei hellen Sterne im Bild von Osten nach Westen (rechts oben nach links unten). Sie leuchten in dieser kosmischen Aussicht hellblau.

Besser bekannt sind die drei Sterne als der Gürtel des Orion. Alle drei sind heißer und um vieles massereicher als unsere Sonne. Sie sind zwischen 700 und 2000 Lichtjahre von uns entfernt. Die Sterne entstanden aus den gut untersuchten interstellaren Wolken in dieser Gegend. In den Wolken liegen einige überraschende Formen. Dazu zählen der dunkle Pferdekopfnebel oder der Flammennebel. Beide sind rechts oben in der Nähe von Alnitak. Der berühmte Orionnebel liegt außerhalb des Bildes, das am Himmel fast 4 Grad breit ist.

Zur Originalseite

Dunkle Nebel im Chamäleon

Zu diesem dunklen Nebelkomplex gehört dicker, brauner Staub. Er markiert ein riesiges V.

Bildcredit und Bildrechte: Xinran Li und Houbo Zhou

Der dunkle, interstellare Staub kann sehr elegant wirken. So ist es auch beim Sternbild Chamäleon man am Südhimmel: Der Staub ist normalerweise mit freiem Auge nicht sichtbar. Daher erkennt man ihn am besten, wenn er das Licht der Sterne und Galaxien, die dahinter liegen, verdeckt. Dieses Bild wurde 11,4 Stunden lang belichtet. Darauf sieht man den Staub in seinem eigenen Licht: Die starken rötlichen und infraroten Farbtöne erzeugen ein sattes Braun.

Der helle Stern Beta Chamaeleontis rechts oben im V bildet einen Kontrast dazu. Der Staub, der ihn umgibt, reflektiert sein blaues Licht und erscheint dort weißlich. Interstellarer Staub entsteht oft in den kühlen Atmosphären von Riesensternen. Sternenlicht und Sternwinde, aber auch Supernova-Explosionen verteilen ihn im All.

Bis auf eine einzige Ausnahme gehören alle Objekte im Bild zu unserer Milchstraße. Der kleine Punkt unter Beta Chamaeleontis ist kein Stern, sondern die ferne Galaxie IC 3104.

Zur Originalseite

Die galaktische Ebene: Radio kontra Licht

Bildcredit und Bildrechte: Radio: S. Mantovanini und the GLEAM team; Licht: Axel Mellinger (milkywaysky.com)

Wie sieht die Milchstraße in Radiowellen aus? Um das herauszufinden, bildete GLEAM (GaLactic and Extragalactic All-sky MWA) das zentrale Band unserer Galaxis mit hoher Auflösung in Radiolicht auf. Dazu wurde das Murchison Widefield Array (MWA) in Australien eingesetzt. Im Video sehen wir dieses Radiolicht auf der linken Seite.

Rechts ist das sichtbare Licht aus der gleichen Gegend am Himmel. Die Unterschiede sind so groß, weil die meisten Objekte im Radiolicht ganz anders leuchten als im sichtbaren Licht. Außerdem wird das sichtbare Licht vom interstellaren Staub in unserer Nähe blockiert.

Besonders deutlich werden diese Unterschiede in Richtung des Zentrums unserer Galaxis. Das sehen wir nach etwa einem Drittel des Videos. Wir erkennen ganz verschiedene bunte Strukturen im Radiolicht. Die hellen, roten Flecken sind Supernova-Überreste von explodierten Sternen. Die blauen Bereiche dagegen sind Sternschmieden. Sie sind voll von jungen, hellen Sternen.

Zur Originalseite