Familienporträt des Sonnensystems

Das Bild ist ein Mosaik aus Aufnahmen der Raumsonde Voyager 1. Es zeigt alle Planeten im Sonnensystem aus der Perspektive der Raumsonde.

Bildcredit und Bildrechte: Voyager-Projekt, NASA

Als die Raumsonde Voyager 1 im Jahr 1990 etwa 6 Milliarden km von der Erde entfernt war, blickte sie zurück in Richtung Sonne und nahm dieses allererste Familienporträt des Sonnensystems auf.

Das vollständige Porträt ist ein Mosaik aus 60 Einzelbildern, die unter einem Blickwinkel von 32° oberhalb der Ekliptikebene aufgenommen wurden. Die Aufnahmen der Weitwinkelkamera an Bord der Voyager-Sonde decken links das innere Sonnensystem ab und reichen rechts bis zum Eisriesen Neptun, den äußersten Planeten des Sonnensystems. Die Positionen von Venus, Erde, Jupiter, Saturn, Uranus und Neptun sind durch Buchstaben gekennzeichnet. Die Sonne ist der helle Punkt in der Mitte des Bildkreises.

Die zusätzlichen Bilder von jedem der Planeten stammen von der Voyager-Telekamera. Nicht zu sehen sind Merkur, der sich zu nahe an der Sonne befindet, um entdeckt zu werden, und Mars, der leider durch das im optischen System der Kamera gestreute Sonnenlicht verdeckt wird. Der kleine, lichtschwache Pluto, der sich zu diesem Zeitpunkt näher an der Sonne befand als Neptun, wurde nicht erfasst.

Im Jahr 2024 ist Voyager 1 nicht nur die Raumsonde der NASA, die am längsten in Betrieb ist, sondern mit einer Entfernung von mehr als 24 Milliarden Kilometern auch die am weitesten entfernte. Sie ist mittlerweile im interstellaren Raum unterwegs.

Zur Originalseite

Jones-Emberson 1

Der planetarische Nebel Jones-Emberson 1 ist eine rot leuchtende Hülle mit einem dunklein Inneren. Der Nebel schwebt mitten im Bild und ist von dünn verteilten Sternen und Galaxien umgeben.

Bildcredit und Bildrechte: Team OURANOS, (Jean-Baptiste Auroux, Jean Claude Mario, Mathieu Guinot und Matthieu Tequi)

Der planetarische Nebel Jones-Emberson 1 ist das Leichentuch eines vergehenden sonnenähnlichen Sterns. Er liegt etwa 1.600 Lichtjahre von der Erde entfernt im Sternbild Luchs mit den scharfen Augen. Der sich ausdehnende Überrest der Atmosphäre des vergehenden Sterns mit einem Durchmesser von etwa 4 Lichtjahren wurde in den interstellaren Raum geschleudert, als der zentrale Vorrat des Sterns an Wasserstoff und Helium für die Kernfusion nach Milliarden von Jahren erschöpft war. In der Nähe des Zentrums des planetarischen Nebels sind die Überreste des Sternkerns zu sehen, ein blau-glühender weißer Zwergstern.

Der Nebel, der auch als PK 164 +31.1 bekannt ist, ist schwach und mit dem Okular eines Teleskops nur sehr schwer zu erkennen. Aber dieses tiefe Bild, das Aufnahmen über 12 Stunden Belichtungszeit kombiniert, zeigt ihn in außergewöhnlichen Details. Sterne in unserer eigenen Milchstraßengalaxie sowie Hintergrundgalaxien im ganzen Universum sind über das klare Sichtfeld verstreut. Auf der kosmischen Bühne ist Jones-Emberson 1 nur ein flüchtiges Objekt, das in den nächsten paar Tausend Jahren verblassen wird. Sein heißer, zentraler Weißer Zwergstern wird Milliarden von Jahren brauchen, um abzukühlen.

Zur Originalseite

Der Kugelsternhaufen Omega Centauri

Mitten im Bild ist der größte und hellste von 200 Kugelsternhaufen, die wir kennen. Es ist Omega Cen im Sternbild Zentaur. Er hat ein helles, diffuses Zentrum, das nach außen hin ausdünnt.

Bildcredit und Bildrechte: Juergen Stein

Im Kugelsternhaufen Omega Centauri sind etwa 10 Millionen Sterne in einen Raum gepfercht, der einem Durchmesser von 150 Lichtjahren hat. Die Sterne sind viel älter als die Sonne.

Der Kugelsternhaufen ist auch als NGC 5139 bekannt. Er ist 15.000 Lichtjahre entfernt. Von den etwa 200 bekannten Kugelsternhaufen, die im Hof unserer Milchstraße wandern, ist er der größte und hellste.

Die meisten Sternhaufen bestehen aus Sternen desselben Alters mit gleicher Zusammensetzung. Im rätselhaften Omega Cen gibt es unterschiedliche Sternpopulationen, deren Alter und chemische Zusammensetzung verschieden ist. Vielleicht ist Omega Cen sogar der übrig gebliebene Kern einer kleinen Galaxie, die mit der Milchstraße verschmolzen ist.

Die Roten Riesen in Omega Centauri sind auf dieser scharfen Teleskopansicht leicht an ihrem gelblichen Farbton erkennbar. Zwei Jahrzehnte lang wurde der dichte Sternhaufen mit dem Weltraumteleskop Hubble erforscht. Dabei zeigten sich Hinweise auf ein massereiches Schwarzes Loch beim Zentrum von Omega Centauri.

Zur Originalseite

Dreiergespann im Schützen

Drei Nebel sind zwischen dichten Sternfeldern und Dunkelnebeln verteilt: Links oben der Lagunennebel, links unten der Trifidnebel und rechts NGC 6559.

Bildcredit und Bildrechte: Andy Ermolli

Diese drei hellen Nebel werden oft auf Teleskopreisen durch das Sternbild Schütze (Sagittarius) und die dicht besiedelten Sternenfelder der zentralen Milchstraße besucht.

Der französische Astronom Charles Messier, ein kosmischer Tourist des 18. Jahrhunderts, katalogisierte zwei von ihnen: M8, den großen Nebel oben in der Mitte und den farbenfrohen M20 unten und links im Bild. Die dritte Emissionsregion ist NGC 6559, rechts von M8 und vom größeren Nebel durch eine dunkle Staubspur getrennt.

Alle drei sind stellare Kinderstuben in etwa fünftausend Lichtjahren Entfernung. Der sich über hundert Lichtjahre erstreckende M8 ist auch als Lagunennebel bekannt. M20 wird im Volksmund auch als Trifidnebel bezeichnet.

Glühendes Wasserstoffgas sorgt für die dominierende rote Farbe der Emissionsnebel. Die blauen Farbtöne im Trifidnebel werden jedoch durch das von Staub reflektierte Sternenlicht hervorgerufen und bilden einen auffälligen Kontrast. Die breite interstellare Himmelslandschaft erstreckt sich über fast 4 Grad oder 8 Vollmonde am Himmel.

Zur Originalseite

Leuchtende Nachtwolken über Florida

Der Himmel in der Morgendämmerung ist oben schwarz und in der Nähe des Horizonts braun. Rechts ziehen dünne Wolken zusammen, die von einem weißen zu einem blauen Farbton wechseln. Unweit vom Scheitelpunkt der Konvergenz ist die Mondsichel.

Bildcredit und Bildrechte: Pascal Fouquet

Diese Wolken sind aus zwei Gründen ungewöhnlich. Zum einen sind sie seltene leuchtende Nachtwolken, d. h. sie sind in der Nacht sichtbar – aber nur kurz vor Sonnenaufgang oder kurz nach Sonnenuntergang.

Zum anderen kennt man die Quelle diese leuchtenden Nachtwolken. In diesem seltenen Fall können die sonnenlichtreflektierenden Eiskristalle in der oberen Atmosphäre auf eine SpaceX-Rakete, die 30 Minuten vorher gestartet ist, zurückgeführt werden.

Formal nennt man sie Polare Mesosphärenwolken. Der Angelpunkt dieser Eissträhnen sieht aus, als ob er sich genau vor dem aufgehenden Sichelmond befinden würde.

Das Bild – und das dazugehörige Video – wurde vor ungefähr einer Woche in Orlando, Florida, USA aufgenommen. Der helle Fleck rechts vom Mond ist der Planet Jupiter, während die Lichterkette rechts über dem Horizont sind Lichter eines Flugzeugs.

Zur Originalseite

Exoplaneten-Zoo: Andere Sterne

Wie Perlen sind verschieden große Exoplaneten verteilt. Links sind bräunliche Planeten, zur Mitte hin sind hellblau bis dunkelblaue Planeten, und rechts sind rote und orangefarbene Himmelskörper.

Illustrationscredit und Bildrechte: Martin Vargic, Halcyon Maps

Haben andere Sterne Planeten wie unsere Sonne? Sicherlich. Dafür gibt es viele Hinweise. Die Gravitation kreisender Exoplaneten erzeugt leichte Sternwackler. Andere Planeten wandern vor Sternen vorbei und trüben sie.

Bisher wurden insgesamt mehr als 5500 Exoplaneten entdeckt. Tausende davon fanden die Weltraummissionen Kepler und TESS der NASA. Mehr als 100 wurden mit dem erdgebundenen Instrument HARPS der ESO entdeckt.

Diese Illustration zeigt eine Vermutung, wie manche dieser Exoplaneten wohl aussehen. In der Mitte sind neptunartige Planeten verteilt. Ihre Atmosphären enthalten vielleicht Methan, das blaues Licht streut. Daher sind sie blau. An den Seiten des Bildes befinden sich jupiterähnliche Planeten. Sie sind hellbraun und rot, weil die Gase in ihren Atmosphären wahrscheinlich kleine Mengen Kohlenstoff enthalten. Dazwischen sind viele erdähnliche Gesteinsplaneten mit unterschiedlichen Farben verteilt.

Je mehr Exoplaneten entdeckt werden, desto besser versteht die Menschheit, wie häufig erdähnliche Planeten sind und wie häufig es Leben im Universum geben könnte.

Zur Originalseite

Irisierende Wolken über Schweden

Bunt schillernde Wolken spiegeln sich im Wasser an einem Ufer, am hinteren Gewässerrand ist eine Stadt und eine bewaldete Anhöhe.

Bildcredit: Göran Strand

Warum sind diese Wolken bunt? Ein relativ seltenes Phänomen in den Wolken, das als Irisieren (Schillern) bekannt ist, kann diese ungewöhnlich lebhaften Farben hervorbringen. Es kann sogar ein ganzer Regenbogen von Farben gleichzeitig erscheinen. Diese polaren Stratosphärenwolken werden auch als schimmernde oder Perlmuttwolken bezeichnet. Sie werden aus zahlreichen gleich kleinen Wassertröpfchen gebildet.

Wenn die Sonne an der richtigen Stelle steht und typischerweise nicht direkt sichtbar ist, können diese dünnen Wolken beobachtet werden. Sie lenken das Sonnenlicht auf eine sehr gleichmäßige Weise ab, wobei die verschiedenen Farben unterschiedlich stark abgelenkt werden. Darum scheinen die unterschiedlichen Farben aus leicht verschiedenen Richtungen zu kommen.

Zahlreiche Wolken fangen mit gleichmäßigen Regionen an, die dann das Irisieren (Schillern) zeigen können, aber bald dafür zu dick und zu durchgerührt werden. Wenn ihn Winkelabstand von der Sonne zu groß wird, können sie die starken Farben nicht mehr hervorbringen.

Das hier gezeigte Bild und das begleitende Video wurden Ende 2019 über Östersund, Schweden aufgenommen.

Zur Originalseite

NGC 7789: Carolines Rose

Das Bild ist von Sternen übersät, die in der Mitte etwas dichter angeordnet sind. Dort befindet sich ein offener Sternhaufen, der in kleinen Teleskopen an eine Rose erinnert.

Bildcredit und Bildrechte: Massimo Di Fusco

Mitten in den sternreichen Regionen der Milchstraße im Sternbild Kassiopeia befindet sich in einer Entfernung von etwa 8000 Lichtjahren der Sternhaufen NGC 7789. Der Sternhaufen wurde Ende des 18. Jahrhunderts von der Astronomin Caroline Lucretia Herschel entdeckt. Er wird Carolines Rose genannt, da der Anblick seiner Sternansammlungen und Leerräume in kleinen Teleskopen an die ineinander liegenden Blütenblätter einer Rose erinnert.

Das Alter des offenen Sternhaufens wird auf 1,6 Milliarden Jahre geschätzt. Die Sterne des Haufens sind wahrscheinlich alle etwa zur selben Zeit entstanden. Die helleren und massereicheren haben den Wasserstoff in ihrem Inneren allerdings schneller verbraucht und sich von einem Hauptreihenstern wie der Sonne zu den vielen Roten Riesensternen entwickelt, die in diesem Farbkomposit mit einem gelblichen Schimmer wiedergegeben werden. Anhand der gemessenen Farben und Helligkeiten können Astronom*innen die Masse und damit das Alter der Haufensterne bestimmen, die gerade beginnen, die Hauptreihe zu verlassen und zu Roten Riesen zu werden.

Carolines Rose hat einen Durchmesser von über 50 Lichtjahren und erstreckt sich am Himmel über ein halbes Grad (die Winkelgröße des Mondes). Auf dieser scharfen Teleskopaufnahme befindet er sich in der Nähe der Bildmitte.

Zur Originalseite