Der Vulkan Villarrica vor dem Himmel

Videocredit und -rechte: Gabriel Muñoz; Text: Natalia Lewandowska (SUNY Oswego)

Wenn Vulkan, der römische Gott des Feuers, seinen Schmiedehammer schwingt, beginnt der Himmel zu brennen. Ein kürzlich erfolgter Ausbruch des chilenischen Vulkans Villarrica zeigt das delikate Zusammenspiel zwischen diesem Feuer – in Wirklichkeit glühender Dampf und Asche aus geschmolzenem Gestein – und dem Licht von fernen Sternen in unserer Milchstraße und den Magellanschen Wolken.

In dem hier gezeigten Zeitraffervideo dreht sich die Erde unter dem Sternenhimmel, während der Villarrica ausbricht. Mit etwa 1.350 Vulkanen ist unser Planet Erde neben dem Jupitermond Io der geologisch aktivste Ort im Sonnensystem. Beide sind zwar wunderschön, aber die Gründe für die Existenz von Vulkanen auf beiden Welten sind unterschiedlich.

Die Vulkane auf der Erde entstehen in der Regel zwischen den sich langsam verschiebenden äußeren Platten, während die Vulkane auf Io durch die Schwerkraftverformung infolge der Gezeiten des Jupiters verursacht werden.

Zur Originalseite

Kometare Globulen

Dunkle Gestalten wirken wie Gespenster, sie haben rote leuchtende Ränder, dahinter sind Sterne.

Bildcredit und Bildrechte: Mark Hanson und Martin Pugh, Observatorio El Sauce

Was sind diese ungewöhnlichen interstellaren Strukturen? Hell umrandete, fließende Formen versammeln sich in der Nähe des Zentrums dieses reichhaltigen Sternenfeldes an den Rändern der südlichen Sternbilder Achterdeck (Puppis) und Segel (Vela).

Die aus interstellarem Gas und Staub bestehende Gruppierung von kometare Globulen ist rund 1.300 Lichtjahre entfernt. Energiereiches ultraviolettes Licht von nahen heißen Sternen hat die Globulen geformt und ihre hellen Ränder ionisiert.

Die Globulen strömen auch vom Vela-Supernova-Überrest weg, was ihre geschwungene Form beeinflusst haben könnte. In ihrem Innern kollabieren wahrscheinlich Kerne aus kaltem Gas und Staub, um massearme Sterne zu bilden, deren Bildung schließlich zur Auflösung der Globulen führen wird.

Die kometare Globule CG 30 (oben links) weist in der Nähe ihres Kopfes ein kleines rötliches Leuchten auf, ein verräterisches Zeichen für energiereiche Strahlen eines Sterns in den frühen Stadien der Entstehung.

Zur Originalseite

Hubble zeigt die Kaulquappengalaxie

Rechts oben ist eine Spiralgalaxie, die von schleifenförmigen Spiralarmen umwickelt ist. Nach links unten zieht sich ein langer Gezeitenschweif aus blauen Sternhaufen.

Bildcredit: Hubble-Vermächtnisarchiv, ESA, NASA; Bearbeitung: Harshwardhan Pathak

Warum hat diese Galaxie einen so langen Schweif? Diese Ansicht entstand aus Bilddaten des Hubble-Vermächtnisarchivs. Weit entfernte Galaxien bilden eine grandiose Kulisse für die zerrissene Spiralgalaxie Arp 188. Sie wird auch Kaulquappengalaxie genannt.

Die kosmische Kaulquappe ist an die 420 Millionen Lichtjahre entfernt. Sie liegt im nördlichen Sternbild Drache (Draco). Ihr augenfälliger Schweif ist etwa 280.000 Lichtjahre lang und enthält massereiche helle, blaue Sternhaufen.

Es heißt, dass eine kompaktere Galaxie vor Arp 188 vorbeizog – in dieser Ansicht von rechts nach links – und durch die Gravitation hinter die Kaulquappe gewickelt wurde. Bei der engen Begegnung zogen die Gezeitenkräfte Sterne, Gas und Staub aus der Spiralgalaxie heraus, sodass der auffällige Schweif entstand.

Die eindringende Galaxie liegt etwa 300.000 Lichtjahre hinter der Kaulquappe. Sie lugt rechts oben durch die Spiralarme im Vordergrund. Wie ihr Namensvetter auf der Erde verliert die Kaulquappengalaxie wohl ihren Schweif, wenn sie älter wird. Die Sternhaufen im Sternschweif bilden dann kleinere Begleiterinnen der großen Spiralgalaxie.

APOD in Weltsprachen: arabisch (IG), bulgarisch, chinesisch (Peking), chinesisch (Taiwan), deutsch, Farsi, französisch, hebräisch, japanisch, katalanisch, niederländisch, portuguiesisch, russisch, serbisch, slowenisch, spanisch, taiwanesisch, tschechisch, türkisch und ukrainisch

Zur Originalseite

Meteor verfehlt Galaxie

Mitten im Bild ist eine Spiralgalaxie, die Dreiecksgalaxie M33. Darunter zischt ein Meteor diagonal durchs Bild, links oben leuchtet die Spur rot, rechts unten grün, nach unten strömen nebelartige Schwaden von der Spur aus.

Bildcredit und Bildrechte: Aman Chokshi

Die Galaxie war zu keiner Zeit in Gefahr. Einerseits ist die abgebildete Dreiecksgalaxie (M33) viel größer als das winzige Gesteinskörnchen im Kopf der Sternschnuppe (des Meteors). Andererseits ist die Galaxie auch viel weiter entfernt – in diesem Fall 3 Millionen Lichtjahre im Vergleich zu zirka 0,0003 Lichtsekunden.

Gleichwohl nahm der Meteor einen Weg, der ihn scheinbar unterhalb der Galaxie vorbei führte. Hinzu kommt, dass der Wind in der oberen Erdatmosphäre den glühenden, dampfenden Molekülzug des Meteors von der Galaxie weggeblasen hat; zumindest erscheint das in der Projektion an den Himmel so.

Dieser Astrophotograph hatte also ziemliches Glück, Meteor und eine Galaxie gleichzeitig in einem Bild erwischt zu haben. Nach der Aufnahme wurde die Galaxie mit zwei weiteren Aufnahmen von M33 verstärkt, um ihre Spiralstruktur und ihre Farben besser herauszuarbeiten. Schließlich war der Meteor nach einer Sekunde verschwunden, während die Galaxie für einige Milliarden Jahre bleiben wird.

Himmelsüberraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995, deutsch ab 2007)

Zur Originalseite

Familienporträt des Sonnensystems

Das Bild ist ein Mosaik aus Aufnahmen der Raumsonde Voyager 1. Es zeigt alle Planeten im Sonnensystem aus der Perspektive der Raumsonde.

Bildcredit und Bildrechte: Voyager-Projekt, NASA

Als die Raumsonde Voyager 1 im Jahr 1990 etwa 6 Milliarden km von der Erde entfernt war, blickte sie zurück in Richtung Sonne und nahm dieses allererste Familienporträt des Sonnensystems auf.

Das vollständige Porträt ist ein Mosaik aus 60 Einzelbildern, die unter einem Blickwinkel von 32° oberhalb der Ekliptikebene aufgenommen wurden. Die Aufnahmen der Weitwinkelkamera an Bord der Voyager-Sonde decken links das innere Sonnensystem ab und reichen rechts bis zum Eisriesen Neptun, den äußersten Planeten des Sonnensystems. Die Positionen von Venus, Erde, Jupiter, Saturn, Uranus und Neptun sind durch Buchstaben gekennzeichnet. Die Sonne ist der helle Punkt in der Mitte des Bildkreises.

Die zusätzlichen Bilder von jedem der Planeten stammen von der Voyager-Telekamera. Nicht zu sehen sind Merkur, der sich zu nahe an der Sonne befindet, um entdeckt zu werden, und Mars, der leider durch das im optischen System der Kamera gestreute Sonnenlicht verdeckt wird. Der kleine, lichtschwache Pluto, der sich zu diesem Zeitpunkt näher an der Sonne befand als Neptun, wurde nicht erfasst.

Im Jahr 2024 ist Voyager 1 nicht nur die Raumsonde der NASA, die am längsten in Betrieb ist, sondern mit einer Entfernung von mehr als 24 Milliarden Kilometern auch die am weitesten entfernte. Sie ist mittlerweile im interstellaren Raum unterwegs.

Zur Originalseite

Jones-Emberson 1

Der planetarische Nebel Jones-Emberson 1 ist eine rot leuchtende Hülle mit einem dunklein Inneren. Der Nebel schwebt mitten im Bild und ist von dünn verteilten Sternen und Galaxien umgeben.

Bildcredit und Bildrechte: Team OURANOS, (Jean-Baptiste Auroux, Jean Claude Mario, Mathieu Guinot und Matthieu Tequi)

Der planetarische Nebel Jones-Emberson 1 ist das Leichentuch eines vergehenden sonnenähnlichen Sterns. Er liegt etwa 1.600 Lichtjahre von der Erde entfernt im Sternbild Luchs mit den scharfen Augen. Der sich ausdehnende Überrest der Atmosphäre des vergehenden Sterns mit einem Durchmesser von etwa 4 Lichtjahren wurde in den interstellaren Raum geschleudert, als der zentrale Vorrat des Sterns an Wasserstoff und Helium für die Kernfusion nach Milliarden von Jahren erschöpft war. In der Nähe des Zentrums des planetarischen Nebels sind die Überreste des Sternkerns zu sehen, ein blau-glühender weißer Zwergstern.

Der Nebel, der auch als PK 164 +31.1 bekannt ist, ist schwach und mit dem Okular eines Teleskops nur sehr schwer zu erkennen. Aber dieses tiefe Bild, das Aufnahmen über 12 Stunden Belichtungszeit kombiniert, zeigt ihn in außergewöhnlichen Details. Sterne in unserer eigenen Milchstraßengalaxie sowie Hintergrundgalaxien im ganzen Universum sind über das klare Sichtfeld verstreut. Auf der kosmischen Bühne ist Jones-Emberson 1 nur ein flüchtiges Objekt, das in den nächsten paar Tausend Jahren verblassen wird. Sein heißer, zentraler Weißer Zwergstern wird Milliarden von Jahren brauchen, um abzukühlen.

Zur Originalseite

Der Kugelsternhaufen Omega Centauri

Mitten im Bild ist der größte und hellste von 200 Kugelsternhaufen, die wir kennen. Es ist Omega Cen im Sternbild Zentaur. Er hat ein helles, diffuses Zentrum, das nach außen hin ausdünnt.

Bildcredit und Bildrechte: Juergen Stein

Im Kugelsternhaufen Omega Centauri sind etwa 10 Millionen Sterne in einen Raum gepfercht, der einem Durchmesser von 150 Lichtjahren hat. Die Sterne sind viel älter als die Sonne.

Der Kugelsternhaufen ist auch als NGC 5139 bekannt. Er ist 15.000 Lichtjahre entfernt. Von den etwa 200 bekannten Kugelsternhaufen, die im Hof unserer Milchstraße wandern, ist er der größte und hellste.

Die meisten Sternhaufen bestehen aus Sternen desselben Alters mit gleicher Zusammensetzung. Im rätselhaften Omega Cen gibt es unterschiedliche Sternpopulationen, deren Alter und chemische Zusammensetzung verschieden ist. Vielleicht ist Omega Cen sogar der übrig gebliebene Kern einer kleinen Galaxie, die mit der Milchstraße verschmolzen ist.

Die Roten Riesen in Omega Centauri sind auf dieser scharfen Teleskopansicht leicht an ihrem gelblichen Farbton erkennbar. Zwei Jahrzehnte lang wurde der dichte Sternhaufen mit dem Weltraumteleskop Hubble erforscht. Dabei zeigten sich Hinweise auf ein massereiches Schwarzes Loch beim Zentrum von Omega Centauri.

Zur Originalseite

Dreiergespann im Schützen

Drei Nebel sind zwischen dichten Sternfeldern und Dunkelnebeln verteilt: Links oben der Lagunennebel, links unten der Trifidnebel und rechts NGC 6559.

Bildcredit und Bildrechte: Andy Ermolli

Diese drei hellen Nebel werden oft auf Teleskopreisen durch das Sternbild Schütze (Sagittarius) und die dicht besiedelten Sternenfelder der zentralen Milchstraße besucht.

Der französische Astronom Charles Messier, ein kosmischer Tourist des 18. Jahrhunderts, katalogisierte zwei von ihnen: M8, den großen Nebel oben in der Mitte und den farbenfrohen M20 unten und links im Bild. Die dritte Emissionsregion ist NGC 6559, rechts von M8 und vom größeren Nebel durch eine dunkle Staubspur getrennt.

Alle drei sind stellare Kinderstuben in etwa fünftausend Lichtjahren Entfernung. Der sich über hundert Lichtjahre erstreckende M8 ist auch als Lagunennebel bekannt. M20 wird im Volksmund auch als Trifidnebel bezeichnet.

Glühendes Wasserstoffgas sorgt für die dominierende rote Farbe der Emissionsnebel. Die blauen Farbtöne im Trifidnebel werden jedoch durch das von Staub reflektierte Sternenlicht hervorgerufen und bilden einen auffälligen Kontrast. Die breite interstellare Himmelslandschaft erstreckt sich über fast 4 Grad oder 8 Vollmonde am Himmel.

Zur Originalseite