Cir X-1: Strahlströme im Afrikanebel

Der Nebel erinnert ein bisschen an Afrika. Das komplizierte Radiobild zeigt Ringe und Strahlströme.

Bildcredit: J. English (U. Manitoba) und K. Gasealahwe (U. Kapstadt), SARAO, MeerKAT, ThunderKAT; Wissenschaft: K. Gasealahwe, K. Savard (U. Oxford) et al.; Text: J. English und K. Savard

Wie lange dauert es, ehe bei einem neu entstandenen Neutronenstern Strahlströme entstehen? Der Afrika-Nebel gibt uns darauf Hinweise: Dieser Supernova-Überrest umgibt Circinus X-1 (auch: Cir X-1). Das ist ein Neutronenstern, der Röntgenstrahlung aussendet. Auch seinen Begleitstern ist im Bild.

Das Bild stammt von der ThunderKAT-Arbeitsgemeinschaft am MeerKAT-Radioteleskop in Südafrika. Es zeigt die helle Kernregion und eine keulenförmige Struktur der aktiven Strahlen von Cir X-1 im Nebel. Sein junges Alter beträgt gerade einmal 4600 Jahre. Damit könnte Cir X-1 die „kleine Schwester“ des Mikroquasars SS433* sein.

Aktuelle Entdeckungen werfen ein neues Licht auf die Geschichte des Systems: Aus einem ringförmigen Loch im oberen rechten Eck des Nebels steigen blasenartige Strukturen auf. Die Blasen und die Anwesenheit eines Rings links unten deutet darauf hin, dass es schon früher Strahlen gab. Simulationen mit Computern zeigen, dass diese Strahlströme schon 100 Jahre nach der Supernovaexplosion entstanden sind, und dass sie über 1000 Jahre lang aktiv blieben. Überraschend ist, dass diese Jets um vieles stärker sein müssten, um die beobachteten Blasen zu erzeugen, als man bisher bei jungen Neutronensternen vermutete.

Zur Originalseite

Der Pferdekopfnebel und der Flammennebel

Das Sternfeld zeigt den Stern Alnitak in Orions Gürtel, den Flammennebel und den Pferdekopfnebel.

Bildcredit und Bildrechte: Daniel Stern

Der Pferdekopfnebel ist einer der berühmtesten Nebel am Nachthimmel. Er ragt als dunkler Schatten in den rötlichen Emissionsnebel hinein, der am rechten Bildrand leuchtet. Die Struktur des Pferdekopfes ist dunkel. Sie ist eine undurchsichtige Staubwolke, die vor dem hellen Emissionsnebel liegt.

Wie Wolken in der Erdatmosphäre nahm auch diese Wolke zufällig eine erkennbare Form an. Im Lauf von vielen tausend Jahren verändern die Bewegungen im Inneren der Wolke sicherlich ihr Erscheinungsbild. Die rötliche Farbe des Emissionsnebels entsteht, wenn sich die Elektronen und Protonen im Nebel zu Wasserstoffatomen rekombinieren.

Auf der linken Seite des Bildes liegt der orange gefärbte Flammennebel mit seinen zarten Fasern aus dunklem Staub.

Zur Originalseite

Kallisto, eine schmutzige, ramponierte Eiskugel

Die Oberfläche des Jupitermondes Kallisto ist dunkel und von hellen Kratern übersät. Das Bild stammt von der Raumsonde Voyager 2.

Bildcredit: NASA, JPL-Caltech, Voyager 2; Bearbeitung und Lizenz: Kevin M. Gill;

Der Jupitermond Kallisto ist größer als der Planet Merkur. Die Oberfläche der ramponierten, schmutzigen Eiskugel hat die höchste Dichte an Einschlagkratern im Sonnensystem. Doch was befindet sich im Inneren?

Die NASA-Sonde Galileo besuchte Kallisto mehrmals in den 1990er- und 2000er-Jahren. Doch diese neu bearbeitete Aufnahme stammt vom Vorbeiflug der NASA-Sonde Voyager 2 aus dem Jahr 1979.

Ohne das helle Eis an der Oberfläche, das durch unzählige Einschläge zerbrochen ist, wäre der Mond noch viel dunkler. Das Innere von Kallisto ist womöglich noch interessanter, denn dort ist vielleicht eine interne Schicht von flüssigem Wasser verborgen. Dieses mögliche Meer im Untergrund könnte sogar Leben bergen. Die Schwestermonde Europa und Ganymed sind ebenfalls Kandidaten dafür.

Kallisto ist etwas größer als Luna, der Mond der Erde. Doch wegen des hohen Anteils an Eis hat Kallisto etwas weniger Masse. Die ESA-Sonde JUICE und die NASA-Sonde Europa Clipper sind gerade auf dem Weg zu Jupiter. Ihr Ziel ist, seine größten Monde noch besser zu untersuchen.

Zur Originalseite

NGC 7027: Der planetarische Kissen-Nebel

Vor einem dunklen Hintergrund mit schwachen Sternen steht fast formatfüllend eine Nebelwolke. Sie ähnelt einem Kissen, das von blauen, transparenten Hüllen umgeben ist.

Bildcredit: NASA, ESA, Hubble; Bearbeitung: Delio Tolivia Cadrecha

Wie entstand dieser ungewöhnliche planetarische Nebel? NGC 7027 ist auch bekannt als „Kissennebel“ und „Fliegender-Teppich-Nebel“. Unter den bekannten planetarischen Nebeln ist er einer der kleinsten, hellsten und ungewöhnlichsten.

Weil bekannt ist, wie schnell er sich ausdehnt, geht man davon aus, dass NGC 7027 aus irdischer Perspektive vor etwa 600 Jahren begann, sich auszudehnen. Fast während der gesamten Zeit hat der planetarische Nebel Hüllen ausgestoßen. Ihr könnt sie auf diesem Bild des Hubble-Weltraumteleskops in Blau erkennen.

Vor kürzerer Zeit begann er jedoch, Gas und Staub in bestimmte Richtungen auszustoßen. Warum das so ist, ist unbekannt. Ihr erkennt ein neues, anscheinend viereckiges Muster in brauner Farbe. Unbekannt ist auch, was sich im Zentrum des Nebels befindet. Nach einer Hypothese gibt es dort ein enges Doppelsternsystem. In diesem gibt ein Stern Gas auf eine unregelmäßige Scheibe ab, die den anderen Stern umrundet.

NGC 7027 ist etwa 3000 Lichtjahre entfernt. Er wurde erstmals 1878 entdeckt. Ihr könnt ihn mit einem handelsüblichen Teleskop in Richtung des Sternbilds Schwan (Cygnus) beobachten.

Zur Originalseite

Ein Zwei-Prozent-Mond

Am rosaroten Himmel über den Kanarischen Inseln leuchtet eine schmale Mondsichel knapp über dem Horizont. Unten ist eine Radioschüssel auf den Mond gerichtet.

Bildcredit und Bildrechte: Marina Prol

Ein junger Sichelmond ist schwer zu sehen. Warum ist das so? Wenn der Mond in einer Sichelphase ist, egal ob jung oder alt, ist er am irdischen Himmel niemals weit von der Sonne entfernt. Der Himmel ist zwar noch hell, doch man sieht auf dieser Himmelslandschaft vom frühen Abend deutlich eine schmale Mondsichel, die von der Sonne beleuchtet wird.

Der Schnappschuss mit Teleobjektiv entstand am 24. August. Bei Sonnenuntergang stand der Mond sehr nahe am westlichen Horizont. Der sichtbare Teil, der von der Sonne beleuchtet ist, war eine sehr schmale, nur 1,5 Tage alte Sichel, die nur zwei Prozent der vertrauten Vorderseite des Mondes zeigt.

Eine steuerbare Radioschüssel zur Kommunikation mit Raumfahrzeugen am Weltraumzentrum der Kanarischen Inseln ist auf diese zwei Prozent des Mondes gerichtet. Das Pastellrosa am Himmel bei Sonnenuntergang stammt teilweise von feinem Sand und Staub aus der Sahara, der vom Wind verweht wird.

Zur Originalseite

Ein dunkler Schleier im Schlangenträger

Das Bild ist von einem rot leuchtenden Nebel durchzogen, durch den ein dunkler Schleier verläuft.

Bildcredit und Bildrechte: Katelyn Beecroft

Die Emissionsregion Sh2-27 leuchtet in diffusem Licht von H-Alpha. Es dominiert diese kosmische Szene. Das Sichtfeld reicht über fast 3 Grad quer im nebelreichen Sternbild Ophiuchus (Schlangenträger) zur zentralen Milchstraße hin.

Über den Vordergrund legt sich ein dunkler Schleier aus dünnen interstellaren Staubwolken. Er wird hauptsächlich als LDN 234 und LDN 204 bezeichnet. Die Bezeichnungen der Objekte stammen aus dem Dunkelnebel-Katalog von 1962. Er wurde von der amerikanischen Astronomin Beverly Turner Lynds erstellt.

Sh2-27 ist die große, aber schwache HII-Region, die den Ausreißerstern Zeta Ophiuchi umgibt. Die HII-Region Zeta Oph sowie LDN 234 und LDN 204 sind wahrscheinlich etwa 500 Lichtjahre von uns entfernt. Bei dieser Distanz zeigt das Teleskopbild einen Bereich, der ca. 25 Lichtjahre breit ist.

Zur Originalseite

Galaxien, Sterne und Staub

Vor einem dunklen Sternenhintergrund zieht eine graubraune Wolke von links unten nach rechts oben durch das Bild. Mittendrin eine kleine leuchtende Spiralgalaxie. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Robert Eder

Diese gut komponierte Aufnahme entstand mit einem Teleskop. Sie zeigt ein Stück Himmel mit der Fläche des Vollmondes. Das Gebiet liegt im Bereich des Sternbilds Pegasus, das hoch am Himmel fliegt. An den helleren Sternen seht ihr Beugungsspitzen. Die Stützen in Spiegelteleskopen erzeugen diesen Effekt. Alle Sterne befinden sich in unserer Milchstraße.

Die schwachen und ausgedehnten Wolken bestehen aus Staub, der sich zwischen den Sternen befindet. Sie schweben über der Ebene der Galaxis und reflektieren schwach das Sternenlicht der Milchstraße. Die leuchtenden Wolken tragen die Bezeichnung „Integrated Flux Nebula“. Sie gehören zu den Molekülwolken unserer Milchstraße.

Über das gesamte Bild zieht sich die diffuse Wolke mit der Bezeichnung MBM 54. Sie ist weniger als tausend Lichtjahre entfernt. Eine Galaxie scheint in die staubige Wolke gewoben zu sein. Es ist die auffällige Spiralgalaxie mit der Katalogbezeichnung NGC 7497. Sie ist 60 Millionen Lichtjahre entfernt. Ihr findet NGC 7497 mittig im Bild und seht sie fast genau von der Kante. Ihre Spiralarme und Staubgebiete ähneln in ihrer Farbgebung den Sternen und Staubwolken unserer Milchstraße.

Zur Originalseite

WISPIT 2b: Exoplanet reißt Lücke in Entstehungsscheibe

Um einen verdeckten Stern kreist eine diffuse helle Scheibe mit einer markanten Lücke. In dieser Lücke ist ein Planet.

Bildcredit: ESO, VLT, SPHERE; Bearbeitung und Bildrechte: ESO, Richelle van Capelleveen (Leiden Obs.) et al.; Text: Ogetay Kayali (MTU)

Der gelbe Punkt – was ist das? Ein junger Planet außerhalb unseres Sonnensystems. Dieses Bild des Very Large Telescope in Chile zeigt überraschenderweise eine ferne Szene, die stark an die Entstehung unseres Sonnensystems erinnert, vor etwa 4,5 Milliarden Jahren. Wir können zwar nicht in die Vergangenheit blicken, um die Entstehung der Erde direkt zu sehen. Doch mit Teleskopen beobachten wir, wie sich ähnliche Prozesse bei fernen Sternen entwickeln.

Mitten im Bild ist ein junger sonnenähnlicher Stern. Er ist hinter einem Koronagrafen verborgen, der seinen hellen Glanz abdeckt. Um den Stern kreist eine helle, staubige protoplanetare Scheibe. Sie enthält das Rohmaterial für Planeten. Spalte und konzentrische Ringe markieren den Orbit, wo eine neu entstandene Welt mit ihrer Gravitation Gas und Staub ansammelt. Auf ihrer Bahn um den Stern räumt sie den Weg frei.

Forschende der Astronomie bildeten zwar auch schon früher Planeten ab, die in Scheiben gebettet sind. Doch diese Beobachtung ist die allererste eines Exoplaneten, der aktiv eine Lücke in eine Scheibe rammt. Es ist der früheste direkte Blick auf aktive planetare Bildhauerei.

Zur Originalseite