Sternbildung im Pac-Man-Nebel

Eine blaue Nebelmitte ist von einem roten Rand umgeben. Rechts ist eine Einkerbung mit einem dunklen Staubwall. Der Nebel im Sternbild Kassiopeia erinnert entfernt an Pac-Man.

Bildcredit und Bildrechte: Juan Montilla (AAE)

Man könnte meinen, der Pac-Man-Nebel würde Sterne fressen, aber in Wirklichkeit bildet er sie. Im Inneren des Nebels sorgen die jungen, massereichen Sterne eines Sternhaufens für das durchdringende Leuchten des Nebels.

Die auffälligen Formen, die sich im Porträt von NGC 281 abzeichnen, sind geformte Staubsäulen und dichte Bok-Globulen, die durch intensive, energiereiche Winde und die Strahlung der heißen Sterne des Haufens abgetragen werden. Wenn sie lange genug überleben, könnten die staubigen Strukturen auch Orte zukünftiger Sternentstehung sein.

NGC 281 wird wegen seiner Form auch Pac-Man-Nebel genannt. Er befindet sich in etwa 10.000 Lichtjahren Entfernung im Sternbild Kassiopeia.

Dieses scharfe Kompositbild wurde Mitte 2024 in Spanien durch Schmalbandfilter aufgenommen. Es kombiniert die Emissionen der Wasserstoff- und Sauerstoffatome des Nebels, um die Farben Rot, Grün und Blau zu erzeugen. Die Szene erstreckt sich über mehr als 80 Lichtjahre bei der geschätzten Entfernung von NGC 281.

Zur Originalseite

NGC 772, die Geigenkopf-Galaxie

Das dunkle Feld ist voller Sterne und Galaxien. Links oben schwebt eine große Spiralgalaxie. Rechts ist ein kleinerer unscharfer Fleck. Es ist ein Komet mit einem kurzen Schweif.

Bildcredit und Bildrechte: Jean-François Bax; Text: Ogetay Kayali (Michigan Tech U.)

Warum sieht diese Galaxie wie ein krauses Gemüse aus? Die Geigenkopf-Spiralgalaxie erhält ihr verzerrtes spiralförmiges Aussehen wahrscheinlich durch eine gravitative Wechselwirkung mit ihrem nahe gelegenen elliptischen Begleiter NGC 770, der direkt darunter zu sehen ist.

Die als NGC 772 und Arp 78 katalogisierte Geigenkopf-Galaxie erstreckt sich über 200.000 Lichtjahre. Sie ist etwa 100 Millionen Lichtjahre von den Sternen unserer Milchstraße entfernt. Wir sehen sie im Sternbild Widder. Auf diesem Bild scheint der Geigenkopf jedoch einen weiteren Begleiter zu haben – einen mit einem langen und unscharfen Schweif: Komet 43P/Wolf-Harrington. Obwohl der Komet direkt auf die massereiche Galaxie gerichtet zu sein scheint, ist er in Wirklichkeit viel näher an uns dran und befindet sich nur Lichtminuten entfernt – also innerhalb unseres Sonnensystems.

Der Komet wird die entfernte Spiralgalaxie nie erreichen und ist auch nicht physisch mit ihr verbunden. Durch einen glücklichen perspektivischen Trick teilen sich diese beiden kosmischen Wunder jedoch kurzzeitig dasselbe Bild, das Ende letzten Jahres von Calern in Frankreich aus aufgenommen wurde.

Zur Originalseite

HH 30: Sternsystem mit entstehenden Planeten

In einem dunklen Feld befindet sich in der Mitte eine einzelne, bunte, verschwommene Struktur. Rote Strahlen breiten sich vom Zentrum nach oben und unten aus. Eine dunkle Scheibe bedeckt das Zentrum. Blaue Ausströmungen treten auf beiden Seiten der horizontalen Scheibe auf. Links unten breitet sich eine größere blaue Ausströmung aus.

Bildcredit: James-Webb-Weltraumteleskop, ESA, NASA und CSA, R. Tazaki et al.

Wie entstehen Sterne und Planeten? Das James-Webb-Weltraumteleskop hat im protoplanetaren System Herbig-Haro 30 in Zusammenarbeit mit Hubble und dem erdgebundenen ALMA neue Hinweise gefunden.

Die Beobachtungen zeigen unter anderem, dass große Staubkörner stärker in einer zentralen Scheibe konzentriert sind, wo sie Planeten bilden können. Das vorgestellte Bild von Webb zeigt viele Merkmale des aktiven HH-30-Systems.

In der Mitte ist eine dunkle, staubreiche Scheibe zu sehen, die das Licht des Sterns oder der Sterne, die sich dort noch bilden, abschirmt. Jets von Teilchen (in Rot dargestellt) werden vertikal nach oben ausgestoßen. Blaureflektierender Staub ist in einem parabolischen Bogen über und unter der zentralen Scheibe zu sehen, obwohl derzeit nicht bekannt ist, warum links unten ein Schweif erscheint.

Die Untersuchung der Planetenentstehung in HH 30 kann den Astronomen helfen, besser zu verstehen, wie sich die Planeten in unserem eigenen Sonnensystem, einschließlich unserer Erde, einst gebildet haben.

Zur Originalseite

Thors Helm und die Möwe

Die leuchtend rote Wolke im Bild erinnert an eine Möwe. Rechts unten ist eine kleine leuchtende Nebelwolke, deren Form an den Helm eines nordischen Gottes erinnert.

Bildcredit und Bildrechte: Nicolas Martino, Adrien Soto, Louis Leroux und Yann Sainty

Diese Nebel, die wie eine Möwe und eine Ente aussehen, sind nicht die einzigen kosmischen Wolken, die Bilder vom Fliegen hervorrufen. Aber beide fliegen über diese weite Himmelslandschaft, die sich fast 7 Grad über den Nachthimmel des Planeten Erde in Richtung des Sternbilds Großer Hund (Canis Major) erstreckt.

Die ausgedehnte Seemöwe (oben in der Mitte) besteht selbst aus zwei großen katalogisierten Emissionsnebeln. Der hellere NGC 2327 bildet den Kopf, während der diffusere IC 2177 die Flügel und den Körper darstellt. Beeindruckend ist, dass die Spannweite der Möwe bei einer geschätzten Entfernung des Nebels von 3800 Lichtjahren etwa 250 Lichtjahren entsprechen würde.

Die Ente unten rechts erscheint viel kompakter und würde bei einer geschätzten Entfernung von 15.000 Lichtjahren nur etwa 50 Lichtjahre umfassen. Der Entennebel, der von den energiereichen Winden eines extrem massereichen, heißen Sterns in der Nähe seines Zentrums angetrieben wird, ist als NGC 2359 katalogisiert. Der dicke Körper und die geflügelten Anhängsel der Ente haben ihr natürlich auch den etwas dramatischeren Beinamen Thors Helm eingebracht.

Zur Originalseite

Asteroid Bennu enthält Bausteine des Lebens

Videocredit: Daten: NASA, SVS, U. Arizona, CSA, York U., MDA; Visualisierung: Kel Elkins (lead, SVS); Text: Ogetay Kayali (Michigan Tech U.)

Was kann uns ein Weltraumfelsen über das Leben auf der Erde sagen? Die NASARaumsonde OSIRIS-REx näherte sich im Oktober 2020 vorsichtig dem erdnahen Asteroiden 101955 Bennu, um Oberflächenproben zu sammeln. Im September 2023 brachte das Roboter-Raumschiff diese Proben zur Erde zurück.

Eine kürzlich durchgeführte Analyse ergab überraschenderweise, dass die Proben 14 von 20 bekannten Aminosäuren enthielten, die wesentlichen Bausteine des Lebens. Das Vorhandensein der Aminosäuren wirft erneut eine große Frage auf: Könnte das Leben im Weltraum entstanden sein?

Die Proteinbausteine selbst boten jedoch noch eine weitere Überraschung: Sie enthielten eine gleichmäßige Mischung aus links- und rechtshändigen Aminosäuren – im Gegensatz zu unserer Erde, die nur linkshändige Aminosäuren besitzt. Dies wirft eine weitere große Frage auf: Warum hat das Leben auf der Erde nur linkshändige Aminosäuren? Die Forschung zu diesem Thema wird sicherlich fortgesetzt.

Zur Originalseite

Wasserstoffwolken in M33

Die Spiralgalaxie M33 im Dreieck wirkt zerfleddert. Ihre Spiralarme sind lose gewickelt und von vielen roten Sternbildungsregionen gesprenkelt.

Bildcredit und Bildrechte: Pea Mauro

Die prächtige Spiralgalaxie Messier 33 scheint mehr als genug glühenden Wasserstoff zu haben. M33 ist ein prominentes Mitglied der lokalen Galaxiengruppe, auch bekannt als Dreiecksgalaxie, und liegt nur 3 Millionen Lichtjahre entfernt.

Die zentralen etwa 60.000 Lichtjahre der Galaxie sind in diesem scharfen Galaxienporträt zu sehen. Das Porträt zeigt die rötlichen, ionisierten Wasserstoffwolken oder HII-Regionen von M33. Die riesigen HII-Regionen von M33, die sich entlang lockerer Spiralarme ausbreiten, die sich auf den Kern zubewegen, sind einige der größten bekannten stellaren Kinderstuben, in denen kurzlebige, aber sehr massereiche Sterne entstehen. Die intensive ultraviolette Strahlung der leuchtenden, massereichen Sterne ionisiert den umgebenden Wasserstoff und erzeugt schließlich das charakteristische rote Leuchten.

In diesem Bild wurden Breitbanddaten mit Schmalbanddaten kombiniert, die durch einen Filter aufgenommen wurden, der das Licht der stärksten sichtbaren Wasserstoff- und Sauerstoffemissionslinien durchlässt.

Zur Originalseite

Webb zeigt Staubschutzhüllen um WR 140

Ein heller Fleck in der Mitte ist von vielen konzentrischen Ringen umgeben. Die Ringe sind fast – aber nicht ganz – kreisrund.

Bildcredit: NASA, ESA, CSA, STScI, E. Lieb (U. Denver), R. Lau (NSF NOIRLab), J. Hoffman (U. Denver)

Was sind diese seltsamen Ringe? Die staubreichen Ringe sind wahrscheinlich 3D-Hüllen – aber wie sie entstanden sind, bleibt ein Forschungsthema. Wo sie entstanden sind, ist gut bekannt: in einem Doppelsternsystem, das etwa 6000 Lichtjahre entfernt im Sternbild Schwan (Cygnus) liegt – ein System, das von dem Wolf-Rayet-Stern WR 140 dominiert wird.

Wolf-Rayet-Sterne sind massereich, hell und für ihre stürmischen Winde bekannt. Sie sind auch dafür bekannt, dass sie schwere Elemente wie Kohlenstoff erzeugen und verbreiten. Kohlenstoff ist ein Baustein des interstellaren Staubs. Der andere Stern im Doppelsternsystem ist ebenfalls hell und massereich, aber nicht so aktiv. Die beiden großen Sterne bewegen sich auf einer länglichen Umlaufbahn und nähern sich einander etwa alle acht Jahre. Bei der größten Annäherung nimmt die Röntgenemission des Systems zu, ebenso wie der in den Weltraum ausgestoßene Staub, der eine weitere Hülle bildet.

Dieses InfrarotBild des Webb-Weltraumteleskops löst mehr Details und mehr Staubschalen auf als je zuvor. Bilder, die über mehrere Jahre hinweg aufgenommen wurden, zeigen, dass sich die Schalen nach außen bewegen.

Zur Originalseite

NGC 7814: Kleine Sombrerogalaxie

Mitten im Bild ist eine nebelartige Galaxie, die wir von der Kante sehen. Sie liegt schräg im Bild, umgeben von vielen weiteren Galaxien, die wie Sterne im Bild verteilt sind. Ein Staubwulst schneidet scheinbar die Galaxie in der Mitte durch.

Bildcredit und Bildrechte: Mike Selby

Richten Sie Ihr Teleskop auf das hoch am Himmel stehende Sternbild Pegasus, und Sie können diese kosmische Weite von Sternen der Milchstraßen und entfernten Galaxien entdecken.

NGC 7814 befindet sich in der Mitte dieses scharfen Bildes, das fast so groß wie ein Vollmond ist. NGC 7814 wird wegen ihrer Ähnlichkeit mit der helleren und berühmteren M104, der Sombrerogalaxie, manchmal auch kleine Sombrerogalaxie genannt.

Sowohl Sombrerogalaxie als auch die kleine Sombrerogalaxie sind Spiralgalaxien. Sie haben ausgedehnte Halos und zentrale Ausbuchtungen, wenn man sie von der Seite betrachtet. Diese Halos werden dabei von einer dünnen Scheibe mit noch dünneren Staubspuren in der Silhouette durchschnitten.

NGC 7814 ist etwa 40 Millionen Lichtjahre entfernt und hat einen geschätzten Durchmesser von 60.000 Lichtjahren. Damit hat die kleine Sombrerogalaxie in etwa die gleiche Größe wie ihr bekannterer Namensvetter und erscheint nur deshalb kleiner und schwächer, weil sie weiter entfernt ist.

Zur Originalseite