Zeitspirale

Die künstlerisch gestaltete Grafik zeigt detailreich die Entwicklung von allem ab dem Urknall bis hin zu mehrzelligem Leben, Säugetieren und Menschen.

Illustrationscredit: Pablo Carlos Budassi via Wikipedia

Was ist seit dem Beginn des Universums geschehen? Die hier abgebildete Zeitspirale zeigt einige der bemerkenswerten Höhepunkte.

Im Zentrum der Spirale befindet sich der Urknall, wo die Zeit, wie wir sie kennen, vor etwa 13,8 Milliarden Jahren ihren Anfang nahm. Die ersten Atome bildeten sich, daraus entstanden die ersten Sterne und schließlich aus Sternen und Gas die Galaxien. Das alles geschah in wenigen Milliarden Jahren. Vor ca. 4,6 Milliarden Jahren entstand unsere Sonne und kurz danach die Erde.

Das Leben auf der Erde begann vor ungefähr 3,8 Milliarden Jahren. Zellen und schließlich Fotosynthese folgten in der nächsten Milliarde Jahren. Vor etwa 1,7 Milliarden Jahren begann mehrzelliges Leben auf der Erde zu gedeihen. Erst seit 500 Millionen Jahren schwimmen Fische auf unserem Planeten. Säugetiere eroberten vor etwa 200 Millionen Jahren das Land.

Die Entwicklung zum Menschen nahm vor etwa 6 Millionen Jahren ihren Anfang – Menschen, die schließlich vor gerade mal 10.000 Jahren die ersten Städte bauten. Die illustrierte Zeitspirale endet hier. Doch vielleicht sollte man noch hinzufügen, dass vor nur 75 Jahren der Mensch die Raumfahrt erfand und in den letzten paar Jahren künstliche Intelligenz immer mehr in den Mittelpunkt rückt.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Schatten eines Marsroboters

Der Schatten des Rovers Perseverance fällt auf eine steinige Marslandschaft. Der Rover befindet sich im Krater Jezero. Hinten am Horizont ragt ein Berg auf.

Bildcredit: NASA, JPL-Caltech, MSSS, ASU, NeV-T, Rover Perseverance; Bearbeitung und Bildrechte: Neville Thompson, Gigapan Zoom

Ein Schatten fällt auf den Mars, und es ist nicht der Schatten eines Menschen? Dann handelt es sich möglicherweise um den Perseverance Rover bei der Erforschung des Mars. Perseverance erforscht den Roten Planeten schon seit 2021, findet Hinweise auf die komplexe Geschichte von Vulkanismus und früher fließendem Wasser und schickt atemberaubende Bilder quer durch das innere Sonnensystem.

Im Bild hier, aufgenommen im Februar 2024, blickt Perseverance mit der Sonne im Rücken über Neretva Vallis im Jezero Crater. Am oberen Bildrand ist ein lokaler Hügel zu sehen. Der eindeutig nicht-menschliche Schatten des autogroßen Rovers fällt auf die verstreuten Felsbrocken. Perseverance sucht weiter nach Hinweisen auf früheres Leben auf dem Mars, allerdings nun ohne seinen fliegenden Begleiter Ingenuity.

Zur Originalseite

Komet Pons-Books mit Gegenschweif

Rechts oben ist der Kopf des Kometen Pons-Brooks. Seine beiden Schweife zeigen scheinbar in verschiedene Richtungen, tatsächlich zeigen sie von uns aus gesehen nach hinten. Der Ionenschweif verläuft diagonal nach unten durchs ganze Bild, der Staubschweif ist verkürzt, er zeigt nach oben und fächert sich nach links bis zum Ionenschweif auf.

Bildcredit und Bildrechte: Rolando Ligustri

Warum hat Komet Pons-Brooks zwei Schweife, die in entgegengesetzte Richtungen weisen?

Am auffälligsten ist der bläuliche Ionenschweif, der sich quer durch das Bild nach unten erstreckt. Der Ionenschweif wird durch den Sonnenwind geradewegs von der Sonne weggedrückt.

Oben rechts im Bild sieht man die helle zentrale Koma des Kometen 12P/Pons–Brooks. Auf der linken Seite der Koma zeigt sich der weit aufgefächerte Staubschweif des Kometen. Dieser Schweif wird vom Strahlungsdruck der Sonne weggeschoben und gebremst. Daher bleibt er eher entlang des Kometenorbits zurück und kann aus bestimmten Blickwinkeln in der entgegengesetzten Richtung zum Ionenschweif erscheinen.

Am unteren Rand des Bildes, das letzte Woche in Namibia aufgenommen wurde, ist der helle Stern Alpha Leporis zu sehen. Vor zwei Tagen durchlief der Komet den erdnächsten Punkt seiner Bahn. Er kann am besten vom Südhimmel aus beobachtet werden, während er langsam schwächer wird und ins äußere Sonnensystem zurückkehrt.

Zur Originalseite

NGC 2403 in Camelopardalis

Die Galaxie im Bild hat leicht zerfledderte Spiralarme und enthält viele HII-Regionen, in denen Sterne entstehen - sie verraten sich durch ihr rötliches Leuchten.

Bildcredit und Bildrechte: (Team F.A.C.T.) Lilian Lbt – Cyrille Malo – Maxime Martin – Clément Daniel – Paul Grasset – Louis Leroux-Géré

Das prächtige Milchstraßensystem NGC 2403 befindet sich im Sternbild Camelopardalis (die Giraffe). Die Spiralgalaxie ist etwa 10 Millionen Lichtjahre von uns entfernt und erstreckt sich über ca. 50.000 Lichtjahre.

Die Galaxie weist relativ viele riesige HII-Gebiete mit Sternentstehung auf. Diese Regionen verraten sich durch das rötliche Glühen von atomarem Wasserstoffgas. Angeregt werden sie durch Ansammlungen von heißen, massereichen Sternen, die ihr kurzes Leben als helle Supernova beenden.

NGC 2403 ist ein Mitglied der M81-Galaxiengruppe und ähnelt M33, der Dreiecksgalaxie, in unserer lokalen Galaxiengruppe. Auch M33 enthält eine Fülle von Sternentstehungsregionen.

Die hellen Sterne mit den spitzen Zacken in diesem Bild von NGC 2403 befinden sich im Vordergrund, also in unserer eigenen Milchstraße. Die schwachen interstellaren Staubwolken der Milchstraße, auch bekannt als galaktischer Zirrus, zählen ebenso zu den Vordergrundobjekten. Doch die zarten Strukturen die von NGC 2403 selbst wegführen sind wahrscheinlich Sternenströme, die durch Gravitation in Wechselwirkung mit Nachbargalaxien herausgezogen werden.

Zur Originalseite

Totale Sonnenfinsternis von der Sichel zum Ring

Videocredit und -rechte: Reinhold Wittich; Musik: „Sonnenaufgang“ aus „Also sprach Zarathustra“ (R. Strauss) von Sascha Ende

So verschwand die Sonne im letzten Monat vom Taghimmel! Das hier gezeigte Zeitraffervideo wurde aus Einzelbildern zusammengesetzt, die am 8. April 2024 in Mountain View, Arkansas, USA, aufgenommen wurden.

Zuerst verdunkelte sich eine schmale Sichel der Sonne mit ihren Flecken. Innerhalb weniger Minuten war schon ein guter Teil der Sonne durch den fortschreitenden Mond im Vordergrund verdeckt. Nach einer Stunde erschienen die einzigen Sonnenstrahlen, die den Mond passierten wie ein Diamantring.

Während der Totalität wurde der umgebende Himmel dunkel und ließ die hellrosa Protuberanzen um den Sonnenrand deutlich werden. Auch die Korona zeigte sich, wie sie in den umgebenden Himmel hinausreicht.

Der zentrale Blick auf die Korona besteht aus einer Summierung von Bildern, die während der völligen Totalität aufgenommen wurden. Ein paar Minuten später, am Ende des Videos, erscheint ein weiterer Diamantring – diesmal auf der anderen Seite des Mondes. Innerhalb der folgenden Stunde kehrte der Himmel wieder zur Normalität zurück.

Bei der NASA ist Woche der Schwarzen Löcher!

Zur Originalseite

Ein Schwarzes Loch zerreißt einen vorbeiziehenden Stern

Die künstlerische Darstellung zeigt einen Staubring, in der Mitte leuchtet ein heller Stern, von dem eine lange schweifartige rote Struktur herausgezogen ist.

Illustrationscredit: NASA, JPL-Caltech

Was passiert mit einem Stern, der in die Nähe eines Schwarzen Lochs gerät?

Wenn der Stern direkt in ein massereiches Schwarzes Loch fällt, verschwindet er zur Gänze. Es ist allerdings wahrscheinlicher, dass der Stern nur nahe am Schwarzen Loch vorbeifliegt. In diesem Fall werden die äußeren Schichten des Sterns durch die Gravitation des Schwarzen Lochs weggerissen oder der Stern wird durch die Gezeitenkräfte zerrissen (tidal disruption), wobei das meiste Gas des Sterns nicht in das Schwarze Loch fällt.

Diese stellaren tidal disruption Ereignisse können so hell wie eine Supernova aufleuchten. Automatische Himmelsdurchmusterungen finden mehr und mehr davon.

Die hier abgebildete künstlerische Darstellung zeigt einen Stern, der gerade ein massereiches Schwarzes Loch passiert hat und dabei Gas verliert, welches im Orbit des Schwarzen Lochs bleibt. Die innere Kante der Gas- und Staubscheibe um das Schwarze Loch wird von diesem Ereignis aufgeheizt und kann noch lange glühen, auch wenn der Stern die Umgebung schon längst wieder verlassen hat.

Bei der NASA ist Woche der Schwarzen Löcher!

Zur Originalseite

Der wechselhafte Ionenschweif des Kometen Pons-Brooks

Das Bild zeigt acht Darstellungen von verschiedenen Tagen übereinander angeordnet: Links sind die Köpfe der Kometenfotos, nach rechts fächern sich die unterschiedlich langen Schweife auf.

Bildcredit und Bildrechte: Shengyu Li und Shaining

Wie sich der Schweif eines Kometen verändert, kommt auf den Kometen an. Der Ionenschweif von Komet 12P/Pons–Brooks hat sich immer wieder stark verändert, wie in der hier gezeigten Bildfolge zu sehen ist. Die Bilder entstanden in den neun Tagen vom 6. bis 14. März (von oben nach unten). An manchen, aber nicht an allen Tagen war der Ionenschweif des Kometen relativ lang und komplex.

Gründe für Veränderungen im Schweif sind beispielsweise die Rate des vom Kometenkern ausgeworfenen Materials, die Stärke und Komplexität des Sonnenwindes sowie die Rotationsgeschwindigkeit des Kometen. Auch die Veränderung der Perspektive von der Erde aus macht sich im Laufe einer Woche im Erscheinungsbild des Kometenschweifs bemerkbar. Im Allgemeinen zeigt der Ionenschweif eines Kometen von der Sonne weg, weil das ausgestoßene Gas vom Sonnenwind nach außen gedrückt wird.

Heute könnte Pons-Brooks zu einem seltenen Kometen werden. Für alle, die die totale Sonnenfinsternis beobachten, könnte er plötzlich mitten am Tag zu sehen sein.

NASA-Bericht: Totale Sonnenfinsternis von heute
Bilder der Finsternis: Interessante Einreichungen an APOD

Zur Originalseite

M51 abrollen

Die Spiralarme der Galaxie M51 wurden im Bild aufgewickelt und als rechteckige Karte dargestellt. Am unteren Bildrand ist das Zentrum der Galaxie, oben hängt die kleine Begleitgalaxie an einem Spiralarm.

Bildcredit und Bildrechte: DatenHubble-Vermächtnisprojekt, EntrollungPaul Howell

2005 gelang dem Hubble-Weltraumteleskop ein beeindruckendes Porträt von M51, einer markanten Spiralgalaxie mit 60.000 Lichtjahren Durchmesser. In dieser digitalen Transformation des Bildes wurden die Spiralarme entrollt.

M51 ist einer der ursprünglichen Spiralnebel. Die gewundenen Arme werden von einer mathematischen Kurve, einer sogenannten logarithmischen Spirale beschrieben. Dabei wächst der Abstand in einer geometrischen Folge mit zunehmender Entfernung vom Zentrum. Durch Anwendung von Logarithmusfunktionen zur Verschiebung der Pixelkoordinaten im Hubble-Bild relativ zum Zentrum von M51 wurden die Spiralarme zu diagonalen geraden Linien verzerrt.

Das umgewandelte Bild zeigt deutlich die Sternentstehung entlang der Arme mit zartrosa Sternentstehungsgebieten und jungen blauen Sternhaufen. Die Begleitgalaxie NGC 5195 (oben) scheint den Weg des Arms vor ihr allerdings zu ändern, während sie selbst vom Entrollen von M51 relativ unberührt bleibt.

Logarithmische Spiralen sind auch als spira mirabilis (Wunderspirale) bekannt. Sie können in der Natur auf allen Skalen gefunden werden. So können sie zum Beispiel auch Wirbelstürme, die Spuren von subatomaren Teilchen in einer Blasenkammer oder Karfiol beschreiben.

NASA-Berichterstattung zur totalen Sonnenfinsternis am 8. April 2024

Zur Originalseite