Wolken und ein goldener Mond

Über Wolken mit einem hellen Rand leuchtet der goldene Vollmond. Er wurde so abgebildet, dass auch die dunklen Meere gut erkennbar sind. Manche erkennen darin ein Gesicht oder einen Hasen, dessen Ohren nach links oben gestreckt sind.

Bildcredit und Bildrechte: Alexsandro Mota

Am 10. Juli ging bei Sonnenuntergang der helle Vollmond auf und sein goldenes Licht beleuchtete Wolken am Himmel über Conceição do Coité in Bahia, Brasilien.

Das malerische Foto entstand mithilfe eines Teleobjektivs. Die hellste Mondphase wurde einmal kurz und einmal lang belichtet. Die beiden Aufnahmen wurden kombiniert und zeigen so Details der Mondoberfläche im hellen Mondlicht und ein zartes Schillern entlang der von hinten angestrahlten Wolkenlandschaft.

Auf der Südhalbkugel der Erde ist der Juli-Vollmond natürlich ein Wintermond. Doch im Norden ist er manchen als Donnermond bekannt, in Anspielung an das oft stürmische Wetter im Sommermonat Juli.

Zur Originalseite

Der interstellare Komet 3I/ATLAS

Die schematische Darstellung zeigt die Bahn des interstellaren Kometen 3I/ATLAS durchs Sonnensystem auf einer hyperbolischen Bahn.

Bildcredit: NASA, JPL-Caltech

Er kam aus den Tiefen des Alls.

Zur Zeit fliegt ein Objekt von außerhalb des Sonnensystems mit hoher Geschwindigkeit vorbei. Wegen seiner Gaskoma wurde es als Komet klassifiziert, doch 3I/ATLAS ist erst das dritte identifizierte Objekt, das von so weit herkommt.

Die Bahn des Kometen ist in der hier gezeigten Karte weiß dargestellt, die Bahnen von Jupiter, Mars und Erde in gelb, rot und blau. Momentan hat Komet 3I/ATLAS etwa die gleiche Entfernung von der Sonne wie Jupiter. Ende Oktober wird er innerhalb des Marsorbits den sonnennächsten Punkt seiner Bahn erreichen. 3I/ATLAS wird nahe an Mars und Jupiter vorbeifliegen, aber nicht in die Nähe der Erde kommen.

Der Ursprung von Komet 3I/ATLAS bleibt unbekannt. Obwohl die anfängliche Aktivität auf einen relativ normalen Kometen hinweist, werden die Beobachtungen zu Natur und Zusammensetzung von 3I/ATLAS auf jeden Fall weitergehen.

Knobelspiel: Astronomie-Puzzle des Tages

Zur Originalseite

Der spiralförmige Nordpol des Mars

Der Nordpol des Mars ist von einer weißen Struktur umgeben, in der spiralförmige Gräben verlaufen.

Bildcredit: ESA/DLR/FU Berlin; NASA MGS MOLA Science-Team

Warum verläuft eine Spirale um den Nordpol des Mars? Jeden Winter entwickelt sich um diesen Pol eine neue, ca. ein Meter dicke Schicht aus gefrorenem Kohlendioxid, das aus der dünnen Marsatmosphäre ausfällt. Darunter liegt eine ganzjährige Schicht aus Wassereis. Vom Zentrum der Polkappe blasen starke Winde herunter. Die Rotation des Roten Planeten verwirbelt diese Winde. Das trägt zur Spiralstruktur des Planum Boreum bei.

Dieses Bild ist ein perspektivisches Mosaik. Es entstand 2017 aus zahlreichen Einzelbildern, die von der ESA-Sonde Mars Express aufgenommen wurden. Das Höhenprofil wurde aus Messungen des Laseraltimeters an Bord der NASA-Sonde Mars Global Surveyor erstellt.

Zur Originalseite

Strichspuren über Savudrija

An der Küste der Halbinsel steht ein Leuchtturm, der Seglern beim Navigieren hilft. Am Himmel steht der Polarstern, um den scheinbar alle Sterne kreisen. Vorne ist eine felsige Küste.

Bildcredit und Bildrechte: Branko Nadj

In dieser Aufnahme des Nachthimmels scheint der Leuchtturm von Savudrija auf die Küste im Norden der Halbinsel Istrien. Der historische Leuchtturm wurde im frühen 19. Jahrhundert erbaut. Er dient als Navigationshilfe für Segler in der Adria.

Doch hoch am Himmel leuchtet eine viel ältere Navigationshilfe: Polaris, der Alphastern im Sternbild Ursa Minor (Kleiner Bär). Er ist auch als Nordstern bekannt. In dieser Aufnahme bildet Polaris den kürzesten hellen Bogen nahe dem Himmelsnordpol. Der Himmelsnordpol ist die Verlängerung der Erdrotationsachse ins All. Daher liegt er natürlich genau im Zentrum der konzentrischen Sternstrichspuren.

Die Fotomontage besteht aus 400 Einzelbelichtungen zu je 30 Sekunden, die digital übereinandergelegt wurden. Die Kamera stand dabei still, während unser Planet weiter rotierte.

Zur Originalseite

Ein milchiger Weg zum Rubin-Observatorium

alt=

Bildcredit: NSF, DOE, Rubin Obs., Paulo Assunção Lago (Rubin Obs.)

Ist der Himmel jede Nacht gleich? Nein! Der Himmel verändert sich von Nacht zu Nacht in vielerlei Hinsicht. Um diese Änderungen besser zu erforschen, erbauten NSF und DOE der USA das Vera C. Rubin Observatorium auf dem Cerro Pachón in Chile.

Das Rubin-Observatorium wurde in diesem Frühjahr fertiggestellt. Es hat nun begonnen, die nächtlichen Veränderungen zu erforschen. Dabei geht es um kleinste Unterschiede, die uns viel über unser erstaunliches Universum und den Zoo an verschiedenen Objekten darin erzählen können. Das Teleskop hat einen Spiegel mit einem Durchmesser von mehr als 8 Metern. Damit wird der gesamte sichtbare Nachthimmel wieder und wieder fotografiert. Dabei sollen neue Supernovae, mögliche gefährliche Asteroiden, schwache Kometen und veränderliche Sterne entdeckt werden. Darüber hinaus kartiert man die großen Strukturen des Universums im sichtbaren Licht.

Im Bild fließt scheinbar das zentrale Band der Milchstraße aus dem neuen Observatorium. Die Aufnahme entstand im letzten Monat. Sie entstand aus 21 Einzelbildern quer über den Nachthimmel. Am Horizont ist Nachthimmellicht zu erkennen. Links unten ist die Kleine Magellansche Wolke zu sehen.

APOD wird 30! Öffentliche Lesung am 11. Juni in Anchorage

Zur Originalseite

Regenbogen-Nachthimmellicht über den Azoren

Über Wasser, Wolken und den Lichtern einer Stadt schimmert ein Sternenfeld. Seltsamerweise ist es nicht schwarz, sondern zeigt eine Mischung aus transparenten Farben, die sich diagonal wiederholen.

Bildcredit und Bildrechte: Miguel Claro (TWAN); überlagerte Beschriftung: Judy Schmidt

Warum leuchtet der Himmel wie ein gigantischer Regenbogen, der sich wiederholt? Die Antwort lautet: Nachthimmellicht (Airglow). Die Luft leuchtet ständig, doch normalerweise ist das kaum zu sehen. Eine Störung kann allerdings deutliche Wellen in der Erdatmosphäre erzeugen. Das kann z. B. ein herannahender Sturm sein. Solche Schwerewellen sind Schwingungen in der Luft, ähnlich wie Wellen, die entstehen, wenn man einen Stein in ruhiges Wasser wirft.

Diese lang belichtete Aufnahme betont die wellenförmigen Strukturen. Der Grund ist vermutlich, dass sie fast genau entlang der senkrechten Wände des Nachthimmellichtes aufgenommen wurde.

Soweit so gut, doch wie entstehen die Farben? Der dunkelrote Schein stammt vermutlich von OH-Molekülen in etwa 87 Kilometern Höhe. Sie werden dort vom ultravioletten Licht der Sonne angeregt. Airglow in Orange und Grün entsteht wohl, wenn Natrium- und Sauerstoffatomen etwas höher in der Atmosphäre angeregt werden.

Dieses Bild wurde bei einer Besteigung des Mount Pico auf den Azoren in Portugal aufgenommen. Der Lichtschein vom Boden stammt von der Insel Faial im Atlantischen Ozean. Hinter den Bändern des Nachthimmellichtes ist ein spektakulärer Himmel zu sehen. Mitten im Bild verläuft das Zentralband unserer Milchstraße. Die Andromedagalaxie (M31) ist oben links zu erkennen.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Gaia erstellt eine Seitenansicht unserer Milchstraße

Ein dunkles Feld umgibt ein dünnes, farbenfrohes Band. Es verläuft horizontal durch die Mitte. Das Band ist fast gerade, krümmt sich jedoch an den Außenkanten.

Illustrationscredit: ESA, Gaia, DPAC, Stefan Payne-Wardenaar

Wie sieht die Milchstraße von der Seite aus? Ein echtes Foto zu machen ist unmöglich, weil wir uns ja in dieser Galaxie befinden.

Vor kurzem wurde allerdings so eine Außenansicht mit Hilfe der genauen Positionen von mehr als einer Milliarde Sternen erstellt. Die Daten stammen von der ESA Mission Gaia. Die Darstellung zeigt, dass unsere Milchstraße eine sehr dünne zentrale Scheibe hat, so wie viele andere Spiralgalaxien auch. In dieser Scheibe befinden sich unsere Sonne und alle Sterne, die wir nachts sehen.

Obwohl es vorher schon Vermutungen dazu gab, war die in den äußeren Bereichen kurvige Form der Scheibe doch eine Überraschung. Die Farben des gebogenen zentralen Bandes der Galaxie stammen überwiegend von dunklem Staub, hellen, blauen Sternen und roten Emissionsnebeln.

Im März wurde die erfolgreiche Gaia-Mission beendet. Doch die Analyse der Daten wird noch lange weitergehen.

Zur Originalseite

Die doppelt gekrümmte Welt binärer Schwarzer Löcher

Quelle der wissenschaftlichen Visualisierung: NASA, GSFC, Jeremy Schnittman und Brian P. Powell; Text: Francis J. Reddy

Wenn ein Schwarzes Loch seltsam aussieht, wie seltsam sind dann erst zwei? HIer kreist ein Paar supermassereicher Schwarzer Löcher umeinander. Die detaillierte Computeranimation zeigt, wie sich Lichtstrahlen aus ihren Akkretionsscheiben ihren Weg durch die gekrümmte Raumzeit bahnen, die von extremer Gravitation erzeugt wird.

Die simulierten Akkretionsscheiben sind in Falschfarben dargestellt. Rot für die Scheibe um ein Schwarzes Loch mit 200 Millionen Sonnenmassen, Blau für die Scheibe um ein Schwarzes Loch mit 100 Millionen Sonnenmassen. Bei diesen Massen würden allerdings beide Akkretionsscheiben das meiste Licht im Ultraviolett abstrahlen.

Das Video zeigt uns jedes der Schwarzen Löcher gleichzeitig von beiden Seiten. Rotes bzw. blaues Licht von beiden Schwarzen Löchern ist im innersten Ring zu sehen. Dieser Ring wird Photonensphäre genannt. Er liegt nahe an den Ereignishorizonten.

In den vergangenen zehn Jahren entdeckte man Gravitationswellen von kollidierenden Schwarzen Löchern. Doch das Verschmelzen supermassereicher Schwarzer Löcher konnte bisher noch nicht nachgewiesen werden.

Bei der NASA ist Woche der Schwarzen Löcher!

Zur Originalseite