Gegendämmerungsstrahlen: Regenbogenfächer über Spanien

Über einem Strand in Spanien breitet sich am Horizont ein Fächer aus Gegendämmerungsstrahlen aus. Die Strahlen wird von einem Regenbogen am wolkigen Himmel begrenzt.

Bildcredit und Bildrechte: Julene Eiguren

Kann dein Regenbogen das auch? Spät abends geht die Sonne wie gewohnt im Westen unter. An diesem Abend war das oben dargestellte farbenfrohe Schauspiel jedoch 180 Grad weiter – im Osten – zu bestaunen. Dort war nicht nur ein Regenbogen zu sehen, sondern auch Gegendämmerungsstrahlen, die vom Mittelpunkt des Regenbogens auszugehen scheinen.

Das hier gezeigte Bild wurde in Lekeitio im nördlichen Spanien aufgenommen, wobei die Sonne sich hinter der Kamera befindet. Der Regenbogen entsteht durch Sonnenlicht, das an den herabfallenden Regentropfen gebrochen und reflektiert wird. Gegendämmerungsstrahlen entstehen, wenn Sonnenlicht am westlichen Horizont strahlenförmig durch die Wolken bricht. Diese Lichtstrahlen laufen einmal quer über den Himmel und scheinen sich am gegenüberliegenden Horizont wieder zu sammeln – eine optische Täuschung.

Regenbögen zu betrachten ist immer aufregend, Gegendämmerungsstrahlen zu sehen ist ein durchaus seltenes Vergnügen, aber beides gleichzeitig zu erwischen ist noch ungewöhnlicher und wirkt schon beinahe surreal.

Knobelspiel: Astronomie-Puzzle des Tages

Zur Originalseite

Wolf-Rayet-Stern 124: Sternwindmaschine

Ein orangerot leuchtender Nebel mit starker Struktur umgibt einen hell leuchtenden Stern in der Bildmitte. Der Nebel füllt einen Großteil des Bildes.

Bildcredit: Hubble-Vermächtnisarchiv, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Manche Sterne explodieren in Zeitlupe. Massereiche Wolf-Rayet-Sterne sind selten. Sie sind so heiß und stürmisch, dass sie sich direkt vor unseren Teleskopen langsam auflösen. Die gewaltigen Sternwinde stoßen leuchtende Gasklumpen aus. Jeder ist typischerweise 30 Mal massereicher als die Erde.

Der Wolf-Rayet-Stern WR 124 leuchtet nahe der Bildmitte. Er erzeugt den sechs Lichtjahre großen Nebel, der ihn umgibt. Er ist als M1-67 bekannt. Warum sich dieser Stern seit 20.000 Jahren langsam sprengt, wird erforscht. WR 124 ist 15.000 Lichtjahre entfernt. Wir finden ihn im Sternbild Pfeil (Sagitta).

Das Schicksal jedes Wolf-Rayet-Sterns hängt wahrscheinlich davon ab, wie viel Masse er besitzt. Aber viele beenden ihre Existenz wahrscheinlich mit spektakulären Explosionen wie Supernovae oder Gammastrahlenblitzen.

Zur Originalseite

Komet G3 ATLAS löst sich auf

Die Bildfelder wurden täglich von 18.-23. Januar aufgenommen. Anfangs hat der Komet noch einen hellen Kern und einen schmalen Schweif, am Ende verschwindet der Kern, der Schweif ist breit, lang und fahl.

Bildcredit: Lionel Majzik

Was passiert mit dem Kometen G3 ATLAS? Mitte Jänner zog er nahe an der Sonne vorbei. Danach wurde der Kopf des Kometen immer blasser. Ende Jänner wurde Komet C/2024 G3 (ATLAS) ein kopfloses Wunder. Trotzdem zeigte er nach Sonnenuntergang weiterhin eindrucksvolle Schweife am Himmel der irdischen Südhalbkugel.

Diese Bilder des Kometen G3 ATLAS wurden in aufeinanderfolgenden Jännernächten im chilenischen Río Hurtado aufgenommen. Der Kopf des Kometen ist in den früheren Tagen (links) eindeutig heller und kompakter als in den späteren Tagen (rechts). Wahrscheinlich ist der Hauptgrund, dass der Kern des Kometen aus Eis und Gestein am Kopf zerbrochen ist.

Komet G3 ATLAS zog weit innerhalb der Bahn des Planeten Merkur um die Sonne, als er ihr am nächsten kam. In dieser Nähe zerstört die Hitze viele Kometen. Einige Bruchstücke des Kometen G3 ATLAS werden weiterhin um die Sonne kreisen.

Galerie: Komet G3 ATLAS

Zur Originalseite

Perlmuttwolken über Schweden

Über einer verschneiten Landschaft mit einigen Häusern im Vordergrund wabern bunt schillernde Wolken.

Bildcredit und Bildrechte: Vojan Höfer

Leuchtend und schimmernd ziehen schillernde Farb-Wellen über diese Himmelslandschaft in Nordschweden. Diese Perlmuttwolken treten selten auf.

Das Bild zeigt ihr unvergessliches Erscheinen am 12. Januar. Die Sonne stand dabei vor Ort knapp unter dem Horizont.

Sie gehören zu den polaren Stratosphärenwolken. Sie entstehen, wenn es in der unteren Stratosphäre ungewöhnlich kalt ist. Dann bilden sich in dieser normalerweise wolkenlosen Schicht der Erdatmosphäre Eiskristalle.

Die Wolken in einer Höhe von 15 bis 25 Kilometer sind von der Sonne beschienen und beugen das Sonnenlicht. Am Erdboden ist die Sonne dann nicht direkt sichtbar.

Zur Originalseite