Der Medusa-Nebel

Der rötliche Nebel links oben im Bild erinnert an eine Blüte, die sich nach oben öffnet, oder eine Medusa, deren Arme nach oben reichen.

Bildcredit und Bildrechte: Bruno Rota Sargi

Beim Medusa-Nebel Abell 21 lassen schlangenartige und miteinander verwobene Filamente aus leuchtendem Gas auf den Namen schließen. Der Medusa-Nebel ist ein alter planetarischer Nebel. Er befindet sich etwa 1500 Lichtjahre entfernt im Sternbild Zwillinge.

Wie seine mythologische Namensvetterin geht der Nebel mit einer dramatischen Verwandlung einher. Die Phase eines planetarischen Nebels stellt das Endstadium der Entwicklung von Sternen mit geringer Masse wie der Sonne dar. Sie verwandeln sich von Roten Riesen in heiße weiße Zwergsterne. Dabei stoßen sie ihre äußeren Schichten ab. Die ultraviolette Strahlung des heißen Sterns erzeugt das Leuchten des Nebels.

Der vergehende Stern der Medusa ist der schwache Stern nahe der Mitte der hellen, sichelförmigen Struktur. Auf dieser lang belichteten Teleskopaufnahme reichen schwächere Filamente weit nach links unten. Der Medusa-Nebel hat schätzungsweise einen Durchmesser von über 4 Lichtjahren.

Zur Originalseite

Der Elefantenrüssel im Kepheus

Ein dunkler Nebel in einer Umgebung aus Schwaden und kleinen, dicht verteilten Sternen ist von rot leuchtenden Nebeln umgeben.

Bildcredit und Bildrechte: Giorgio Ferrari

Wie eine Illustration in einer galaktischen „Just So Story“ (Erklärungsfabel) windet sich der Elefantenrüsselnebel durch die Emissionsregion und den jungen Sternhaufenkomplex IC 1396 im weit entfernten Sternbild Kepheus. Dieser kosmische Elefantenrüssel wird auch als vdB 142 bezeichnet. Er ist über 20 Lichtjahre lang.

Die detaillierte Teleskopansicht zeigt die hellen, nach hinten geschwungenen Grate und Taschen mit kühlem interstellarem Staub und Gas, die in dieser Region reichlich vorhanden sind. Die dunklen, rankenförmigen Wolken enthalten Rohmaterial für Sternentstehung und verbergen darin Protosterne.

Der relativ schwache IC 1396-Komplex ist fast 3000 Lichtjahre entfernt. Er bedeckt eine große Region am Himmel, die sich über mehr als 5 Grad erstreckt. Diese Darstellung ist jedoch nur ein 1 Grad breit, das entspricht etwa der Winkelgröße von 2 Vollmonden.

Zur Originalseite

Orion zeigt den Erduntergang

Links im Vordergrund ist ein Teil des Raumschiffs Orion zu sehen. Rechts füllt der runde, graue, hell beleuchtete Mond die Hälfte des Bildes. Am Rand des Mondes unter der Bildmitte steht klein im Hintergrund die Erdkugel, auf der sich weiße Wolken und blaue Ozeane erahnen lassen.

Bildcredit: NASA, Artemis 1

In diesem Schnappschuss aus dem Weltraum sind acht Milliarden Menschen kurz davor zu verschwinden: Ihre Heimatwelt versinkt hinter dem hellen Rand des Mondes. Eine Außenkamera des Raumschiffs Orion hat diesen Schnappschuss am 21. November 2022, dem sechsten Tag der Mission Artemis I, aufgenommen.

Orion sollte kontrolliert bis auf 130 Kilometer an die Mondoberfläche heranfliegen. Mit der durch dieses Manöver gewonnenen Geschwindigkeit erreichte Orion eine weite rückläufige Umlaufbahn um den Mond. Diese Umlaufbahn ist weit, weil sie 92.000 Kilometer über den Mond hinausreicht. Sie ist rückläufig, weil das Raumfahrzeug in entgegengesetzter Richtung zur Bahn des Mondes um die Erde kreist. Orion trat am 25. November in seine weite rückläufige Umlaufbahn ein.

Beim Umrunden des Mondes erreichte Orion am 28. November die maximale Entfernung von der Erde (etwas mehr als 400.000 Kilometer). Damit brach es den von Apollo 13 aufgestellten Rekord für das am weitesten entfernte Raumfahrzeug, das für die Erforschung des Weltraums durch den Menschen entwickelt wurde.

Der Start der Mission Artemis II ist frühestens für September 2025 geplant. Dabei sollen vier Astronaut*innen den Mond umfliegen und wieder zurückgebracht werden.

Zur Originalseite

Undulatus-Wolken über dem Las Campanas Observatorium

Am blauen Himmel verlaufen walzenförmige Wolken, die scheinbar über dem Hügel des Las-Campanas-Observatoriums zusammen.

Bildcredit und Bildrechte: Yuri Beletsky (Carnegie Las-Campanas-Observatorium, TWAN); h/t: Alice Allen

Was ist mit diesen Wolken los? Scheinbar verlaufen lange, dünne Wolken zum Gipfel eines Hügels und zeigen auf ein weltberühmtes Observatorium. Doch das stimmt nur zum Teil.

Die Wolken werden Undulatus genannt. Sie entstehen, wenn sich periodische wellenförmige Luftströme in der niedrigen Erdatmosphäre zufällig überlagern. Undulatus zählen zu den Asperitaswolken. Sie entstehen an Gipfeln, wenn die Luft kühl genug ist, dass Feuchtigkeit zu undurchsichtigen Wassertröpfchen kondensiert. Die Weitwinkel-Perspektive des Panoramas führt zu der Illusion, dass die Wolken über dem Hügel zusammenlaufen.

Auf dem Gipfel steht tatsächlich eine weltberühmte Sternwarte. Es ist das Las-CampanasObservatorium des Carnegie-Instituts für Wissenschaft. Es steht in der Atacamawüste in Chile. Die beiden weithin sichtbaren Teleskop-Kuppeln sind die Magellan-Teleskope. Sie haben einem Spiegeldurchmesser von je 6,5 Metern.

Der zufällige Anblick war eine Überraschung. Der spontane Fotograf machte Ende September einen Schnappschuss mit dem Smartphone.

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995, deutsch ab 2007)

Zur Originalseite

Sterne und Staub im Pac-Man-Nebel

Vor dem Hintergrund von bläulich leuchtendem Gas sind mehrere filigrane, hell- bis dunkelbraune Strukturen aus Staub zu erkennen. Am rechten Bildrand ragt eine solche besonders große, dunkle Struktur ins Bild. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Malcolm Loro

Sterne können aus den dichten, dunklen Molekülwolken, aus denen sie entstehen, gewaltige und filigrane Skulpturen aus Staub erschaffen. Um die fein gearbeiteten Arbeiten zu gestalten, nutzen sie zwei Werkzeuge: Licht hoher Energie und schnelle Sternwinde. Die von den Sternen erzeugte Hitze verdampft den dunklen molekularen Staub. Zudem verteilt sie das Wasserstoffgas in der Umgebung und bringt es zum Leuchten.

Der junge offene Sternhaufen in diesem Bild trägt die Bezeichnung IC 1590. Bald wird er rund um die filigranen Strukturen aus Staub zwischen den Sternen fertig sein. Er befindet sich im Emissionsnebel NGC 281. Dieser heißt aufgrund seiner Gesamtform Pac-Man-Nebel.

Die Staubwolke direkt oberhalb der Mitte ist eine Bok-Globule. Sie könnte unter dem Einfluss der Schwerkraft zusammenfallen und dabei einen Stern – oder mehrere Sterne – bilden. Der Pac-Man-Nebel liegt etwa 10.000 Lichtjahre entfernt im Sternbild Kassiopeia.

Zur Originalseite

LDN 1471: Eine vom Wind geformte Sternenhöhle

Um einen hellen Stern in der Bildmitte mit langen Zacken verläuft eine Stoßwelle nach links unten. Die Stoßwelle hat die Form eines Bogens, der in der Mitte breiter und heller ist.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Wer oder was hat nur diese parabolische Struktur geschaffen? Diese beleuchtete Höhlung ist als LDN 1471 bekannt. Sie wurde von dem gerade entstehenden Stern geformt, er ist die helle Lichtquelle am Scheitel der Parabel. Dieser Protostern verströmt gerade einen starken Sternwind, der dann mit dem umgebenden Material in der Perseus-Molekülwolke wechselwirkt und eine Aufhellung bewirkt.

Wir sehen nur eine Seite der Höhlung. Die andere Seite wird von dunklem Staub verdeckt. Die parabolische Form kommt daher, dass der Sternwind sich kegelförmig aufweitet, während er im Lauf der Zeit die Höhlung in die Wolke bläst.

Auf der anderen Seite des Protosterns sind zwei weitere Strukturen zu sehen: Diese sogenannten Herbig-Haro Objekte werden ebenfalls durch die Wechselwirkung des Sternwinds mit dem Umgebungsmaterial geformt. Die Ursache für die Rillen an den Wänden des Hohlraums ist jedoch nach wie vor unbekannt.

Dieses Bild wurde vom Hubble Weltraumteleskop der NASA und ESA aufgenommen. Zuvor war die Struktur vom Spitzer Weltraumteleskop entdeckt worden.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Pluto bei Nacht

Das Bild zeigt die Nachtseite des Planeten Pluto. Die Raumsonde New Horizons fotografierte es bei ihrer Abreise. Es zeigt die Atmosphäre um den Zwergplaneten, die zart schimmert.

Bildcredit: NASA, Johns Hopkins Univ./APL, Südwest-Forschungsinstitut

Diese geisterhafte Szenerie zeigt die Nachtseite des Pluto aus einer unwirklichen Perspektive. Das Bild wurde von der Raumsonde New Horizons im Juli 2015 etwa 19 Minuten nach ihrer größten Annäherung an den Pluto aufgenommen, als die Sonde sich schon wieder 21.000 Kilometer von dem Zwergplaneten entfernt hatte. Die Sonne befand sich zu diesem Zeitpunkt 4,9 Milliarden Kilometer (fast 4,5 Lichtstunden) hinter der dunklen und fernen Welt.

Das Bild zeigt die dramatische Silhouette von Pluto als Bewohner des Kuipergürtels. Es offenbart auch seine dünne Atmosphäre, die aus überraschend komplexen Dunstschichten besteht. Die sichelförmige Dämmerungslandschaft nahe am oberen Bildrand zeigt südliche Gebiete mit Stickstoffeis-Ebenen. Sie werden mittlerweile offiziell als Sputnik Planitia bezeichnet. Auch die zerklüfteten Berge der Norgay Montes aus Wassereis sind zu sehen.

Zur Originalseite

Apollo 12 und Surveyor 3

Mit rot-blauen Brillen wirkt das Bild dreidimensional. Die Anaglyphe zeigt einen Astronauten bei einer Raumsonde auf dem Mond. Hinten am Horizont steht die Mondlandefähre.

Bildcredit: NASA, Apollo 12, Alan Bean – Rechte am Stereobild: Kevin Frank

Diese Darstellung ist für die Verwendung einer Rot/Grün-Brille optimiert, um einen 3D-Effekt zu erzeugen. Wir blicken hier über den westlichen Ozean der Stürme auf der Mondoberfläche. Das 3D-Anaglyphenbild zeigt Pete Conrad. Er ist Astronaut der Mission Apollo 12. Hier untersucht er im November 1969 Surveyor 3, eine robotische Raumsonde. Surveyor 3 landete ungefähr zweieinhalb Jahre zuvor im April 1967 an der Innenseite eines kleinen Kraters.

Im Hintergrund steht die Landefähre Intrepid der Apollo 12 Mission. Sie ist keine 200 Meter entfernt. Diese Distanz lässt sich also leicht bei einem Mondspaziergang zurücklegen.

Das Stereo-Bild wurde aus zwei separaten Bildern erstellt (AS12-48-7133 und AS12-48-7134), die Alan Bean von seinem Kollegen auf der Mondoberfläche aufgenommen hatte. Sie bilden die Szene mit einem Abstand ab, der in etwa dem menschlichen Augenabstand entspricht. Das ermöglicht einen 3D-Eindruck, der auch in unserem Gehirn entsteht, wenn unsere Augen ein leicht versetztes Bild der gleichen Szene liefern.

Zur Originalseite