Illustris: Simulation des Universums

Videocredit: Illustris-Arbeitsgemeinschaft, NASA, PRACE, XSEDE, MIT, Harvard CfA; Musik: Die vergiftete Prinzessin (Media Right Productions)

Wie kamen wir dazu? Klicken Sie auf „play“, lehnen Sie sich zurück und genießen Sie. Es handelt sich um eine Computer-Simulation der Entwicklung des Universums. Sie zeigt die Entstehung von Galaxien und des Platzes der Menschheit im Universum. Das Illustris Projekt verbrauchte 20 Million CPU-Stunden. Im Jahr 2014 wurden damit 12 Milliarden Auflösungselemente eines Würfels mit der Kantenlänge von 35 Millionen Lichtjahren berechnet. um zu zeigen, wie dieses Raumelement sich über 13 Milliarden Jahre entwickelt. Die Simulation verfolgt die Materie zurück bis zu ihrer Entstehung – und zwar für viele verschiedene Typen von Galaxien.

Während sich das virtuelle Universum entwickelt, wird ein Anteil der Materie, die sich mit dem Universum ausdehnt, schnell gravitativ gebunden. Dadurch bilden sich Filamente aus Galaxien und Galaxienhaufen. Das hier gezeigte Video zeigt die Perspektive von einer (nicht realistischen) Kamera, die Teile des sich verändernden Universums umkreist. Dabei nimmt sie erst die Entwicklung von Dunkler Materie auf, dann Wasserstoffgas abhängig von seiner Temperatur (0:45), dann schwere Elemente wie Helium und Kohlenstoff (1:30) und schließlich wieder Dunkle Materie (2:07).

Unten links wird die Zeit seit dem Urknall eingeblendet, während oben rechts angezeigt wird, welche Art von Materie gerade dargestellt wird. Explosionen (0:50) in Galaxienzentren kommen von den supermassiven Schwarzen Löchern, die Blasen von heißem Gas ausstoßen.

Interessante Abweichungen der Illustris-Simulation vom realen Universum wurden ebenfalls untersucht, z.B. dass die Simulation eine Überhäufigkeit von alten Sternen produziert.

Zur Originalseite

Der letzte Vollmond

Über einem Gebirge ragt ein gelblicher Mond mit dunklen Meeren auf, er wirkt durch die Atmosphäre über dem Horizont verzerrt. Unten sind Wolken vor dem Mond.

Bildcredit und Bildrechte: Giacomo Venturin

Der letzte Vollmond des Jahres 2023 geht in dieser surrealen Berg- und Himmelslandschaft auf. In der nördlichen Hemisphäre wird er auch „Kalter Mond des Dezember“ oder „Mond der Langen Nacht“ genannt. Die dalieske Szene wurde in einer einzigen Aufnahme mit einer Kamera und einem langen Teleobjektiv in der Nähe von Monte Grappa, Italien, eingefangen. Der Vollmond schmilzt jedoch nicht. Seine gestreckte und verzerrte Erscheinung in der Nähe des Horizonts wird durch die veränderte Brechung entlang der Sichtlinie verursacht, die zu wechselnden Bildern oder Luftspiegelungen der hellen Mondscheibe führt.

Die Veränderungen in der atmosphärischen Brechung werden hervorgerufen durch atmosphärische Schichten mit stark unterschiedlichen Temperaturen und Dichten. Weitere Effekte der atmosphärischen Brechung, die durch die lange Sichtlinie zu diesem Vollmondaufgang hervorgerufen werden, sind der dünne rote Rand, der schwach am verzerrten unteren Rand des Mondes zu sehen ist, und ein dünner grüner Rand entlang des oberen Randes.

Zur Originalseite

Shakespeare im All

Mitten im Bild ist Uranus auf sehr ungewöhnliche Weise dargestellt, die Ringe leuchten sehr hell. Um ihn herum sind seine Monde angeordnet und mit Namen beschriftet.

Bildcredit: NASA, ESA, CSA, STScI

1986 war Voyager 2 die erste Raumsonde, die den Eisriesen Uranus aus der Nähe erkundete. Dennoch bietet dieses neu veröffentlichte Bild der NIRCam (Nahinfrarotkamera) des James Webb Space Telescopes (JWST) einen detaillierten Blick auf diese ferne Welt. Der geneigte äußere Planet dreht sich einmal in etwa 17 Stunden um seine Achse. Sein Nordpol befindet sich derzeit in der Nähe unserer Sichtlinie, was einen direkten Blick auf seine nördliche Hemisphäre und sein schwaches, aber ausgedehntes System von Ringen ermöglicht.

Von den 27 bekannten Monden des Riesenplaneten sind 14 auf dem Bild markiert. Die helleren von ihnen zeigen Hinweise auf die charakteristischen Beugungsspitzen des JWST. Und obwohl diese Welten des äußeren Sonnensystems zu Shakespeares Zeiten unbekannt waren, sind bis auf zwei alle 27 Uranmonde nach Figuren aus den Stücken des englischen Barden benannt.

Zur Originalseite

Jupiter und der Geminid

Ein gleißend heller, grün-türkiser Meteor flitzt schräg durch das Bildfeld, im Hintergrund leuchten zarte Sterne, unter der Feuerkugel sind die Plejaden und die Hyaden erkennbar, rechts leuchtet der helle Planet Jupiter.

Bildcredit und Bildrechte: Gaurav Singh

Für einen kurzen Moment hat dieser Meteor den Planeten Jupiter am Nachthimmel überstrahlt. Dieses Zufallsbild wurde mit einer Kamera im Zeitraffermodus bei der Jagd nach Sternschnuppen am 14. Dezember, um das Maximum des Sternschnuppenschauers der Geminiden, unter dem kalten Sternenhimmel von Kanada aufgenommen.

Der Sternschnuppenschauer der Geminiden ist das jährliche Geschenk des Asteroiden 3200 Phaeton und erscheint immer im Dezember. Der Sternschnuppenregen wird durch Staub verusacht, den der mysteriöse Asteroid auf seiner Bahn um die Sonne verliert. Die Staubpartikel fallen mit 22 Kilometer pro Sekunde durch die oberen Schichten der Erdatmosphäre.

Die Sternschnuppen der Geminiden scheinen von einem Punkt im Sternbild Zwillinge auszugehen, der sich links unten außerhalb des Bildes befindet. Der helle Jupiter ist rechts neben der Bildmitte zu sehen, in der Bildmitte selbst befindet sich der Sternhaufen der Plejaden und darunter der Sternhaufen der Hyaden (das nach links gedrehte V) – beides klassische Himmelsobjekte einer Dezembernacht.

Zur Originalseite

Regenbogen-Polarlicht über isländischem Wasserfall

In der Bildmitte ist ein Wasserfall unter einem Sternenhimmel zu sehen. Über dem Wasserfall wölbt sich ein buntes Polarlicht. Über dem Polarlicht wölbt sich das zentrale Band der Milchstraße.

Bildcredit und Bildrechte: Stefano Pellegrini

Regenbogenfarbenes Polarlicht, geht das überhaupt? Durchaus, Polarlichter können wie Regenbögen aussehen, obwohl es sich um völlig unterschiedliche Phänomene handelt. Polarlichter werden durch von der Sonne erzeugte Teilchen verursacht, die durch das Magnetfeld der Erde in die Erdatmosphäre gelenkt werden und durch die Anregung von Atomen in unterschiedlichen Höhen Farben erzeugen. Umgekehrt entstehen Regenbögen durch die Brechung des Sonnenlichts an fallenden Regentropfen, wobei die verschiedenen Farben in leicht unterschiedlichen Winkeln gebrochen werden. Leider können Polarlichter keine Wasserfälle erzeugen, aber wenn man gut plant und Glück hat, kann man sie zusammen fotografieren.

Das hier gezeigte Bild ist aus mehreren Aufnahmen zusammengesetzt, die in derselben Nacht letzten Monat in der Nähe des Skógafoss-Wasserfalls in Island gemacht wurden. In der Vorbereitung konzentrierte sich der Fotograf darauf, das zentrale Band unserer Milchstraßengalaxie über dem malerischen Wasserfall einzufangen. Wie es der Zufall wollte, erschien kurz darauf ein spektakuläres Polarlicht direkt unter dem geschwungenen Bogen der Milchstraße. Weit im Hintergrund sind der Sternhaufen der Plejaden und die Andromeda-Galaxie zu erkennen.

Zur Originalseite

IC 443: Der Quallennebel

In der Mitte leuchtet ein stark gefaserter, detailreicher quallenförmiger Nebel abgebildet, im Hintergrund sind Sterne und einige weitere Nebel verteilt.

Bildcredit und Bildrechte: David Payne

Warum schwimmt diese Qualle in einem Meer aus Sternen? Der Quallennebel schwebt nahe dem hellen Stern Eta Geminorum (im Bild rechts) durch das All und streckt dabei seine Tentakeln von der hellen, gebogenen Emissionszone links vom Zentrum aus.

Die kosmische Qualle ist eigentlich Teil des blasenförmigen Supernovaüberrests IC 443. Dabei handelt es sich um eine nach der Explosion eines massereichen Sterns expandierende Staub- und Gaswolke. Vor mehr als 30.000 Jahren erreichte das erste Licht dieser Explosion die Erde. So wie der Krabbennebel, sein Cousin in astronomischen Gewässern, beherbergt auch IC 443 einen Neutronenstern – den Rest eines kollabierten stellaren Kerns.

Der Quallennebel ist etwa 5.000 Lichtjahre von uns entfernt. In dieser Distanz würde sich das gezeigte Bild über einen Durchmesser von etwa 140 Lichtjahren erstrecken.

Kalender 2024: DE: Versand ab Passau, daher rasche Zustellung; Bestellungen aus AT werden in Wien versendet.

Zur Originalseite

Kathedrale, Berg, Mond

Auf einem Berg steht eine beleuchtete Kathedrale, dahinter ragt ein Berg auf, hinter dem der Mond aufgeht.

Bildcredit und Bildrechte: Valerio Minato

Einzelaufnahmen wie diese erfordern Planung. Zuerst muss man erkennen, dass eine so bemerkenswerte dreifache Übereinstimmung in der Fluchtlinie tatsächlich stattfindet. Der nächste Schritt ist, den besten Ort für das Fotografieren zu finden. Doch der dritte Schritt war der schwierigste: genau zur richtigen Zeit vor Ort zu sein und das bei klarem Himmel.

Bei fünf Versuchen in den letzten sechs Jahren hatte der Fotograf schlechtes Wetter. Aber vor zehn Tagen war das Wetter endlich perfekt und ein fotografischer Traum konnte Wirklichkeit werden. Die Aufnahme zeigt im Vordergrund die Basilika von Superga im Piemont, Italien. Der Berg dahinter ist der Monviso und Sie wissen sicherlich, welcher Mond den Hintergrund bildet.

Obwohl der aufgehende Mond in einer Sichelphase aufgenommen wurde, war die Belichtungszeit lang genug, dass der doppelt reflektierten Erdschein, auch da Vinci glow genannt, den gesamten obere Teil des Mondes beleuchten konnte.

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995, deutsch ab 2007)

Zur Originalseite

NGC 2440: Kokon eines neuen Weißen Zwergs

Vor einem dunklen Hintergrund leuchtet ein runder Nebel, der entfernt an das Innere einer Iris im Auge erinnert.

Bildcredit: NASA, ESA, Hubble; Bearbeitung: H. Bond (STScI), R. Ciardullo (PSU), Forrest Hamilton (STScI)

Was ist da im Zentrum? Wie ein Schmetterling beginnt ein weißer Zwergstern sein Leben in einer Art Kokon. Dieser besteht aus dem Gas seines früheren Selbst, das allmählich verfliegt, weil der einzige Stern es abgestoßen hatte. In dieser Analogie gesprochen wäre die Sonne eine Raupe und die abgestoßene Gashülle wird die schönste von allen werden.

Der hier gezeigte Kokon, der Planetarische Nebel mit der Bezeichnung NGC 2440 birgt einen der heißesten weißen Zwergsterne, die wir kennen. Der Weiße Zwerg ist auf dem Bild als heller orange-farbener Punkt nahe der Bildmitte zu sehen. Unsere Sonne wird irgendwann schließlich auch ein Weißer Zwerg-Schmetterling werden, aber nicht in den nächsten 5 Milliarden Jahren.

Zur Originalseite