Gelbe Kugeln in W33

Das Bild von W33 wurde in Infrarot-Wellenlängen aufgenommen, diese wurden in Farben des sichtbaren Lichts gefärbt. Im Bild sind Objekte verteilt, die als gelbe Kugeln bezeichnet wurden.

Bildcredit: NASA/JPL-Caltech

Das Weltraumteleskop Spitzer beobachtete die Infrarot-Wellenlängen 3,6 Mikrometer, 8,0 und 24,0 Mikrometer. Im Bild sind sie als sichtbares Licht in Rot, Grün und Blau dargestellt. Die kosmische Wolke aus Gas und Staub ist W33. Es ist ein massereicher Komplex mit Sternbildung nahe der Ebene unserer Milchstraße. W33 ist etwa 13.000 Lichtjahre entfernt.

Was sind diese gelben Kugeln? Interessierte Laien fragten das beharrlich immer wieder. Die Laien beteiligten sich online am Milky Way Project. Als sie viele Spitzer-Bilder überflogen, fanden sie diese Gebilde und nannten sie „gelbe Kugeln“.

Nun gibt es eine Antwort. Man erkannte, dass die gelben Kugeln auf Spitzer-Bildern ein frühes Stadium bei der Entstehung massereicher Sterne sind. Sie erscheinen gelb, weil sich dort rote und grüne Bereiche überlappen. Diese Farben wurden den Spitzer-Wellenlängen von Staub und organischen Molekülen zugewiesen, die man als PAHs bezeichnet.

Gelbe Kugeln zeigen das Stadium, bevor junge, massereiche Sterne im Gas und Staub, der sie umgibt, Höhlen bilden. Sie erscheinen auf dem Spitzer-Bild als Blasen mit grünem Rand und rotem Zentrum. Die Erfolgsgeschichte der astronomischen Schwarmforschung ist nur ein Teil des Zooniversums.

Das Bild von Spitzer ist 0,5 Grad breit. Das entspricht in der geschätzten Entfernung von W33 etwa 100 Lichtjahren.

Zur Originalseite

Eine Nacht in Poker Flat

Von links unten steigen leuchtende Spuren zur oberen Bildmitte auf. Es sind vier startende Raketen. Die leuchtenden Spuren enden scheinbar beim Zentrum der Strichspuren, die die Sterne am Himmel gezogen haben. Der ganze Himmel ist von grünen Polarlichtern überzogen.

Bildcredit und Bildrechte: NASA / Jamie Adkins

Vier suborbitale Forschungsraketen der NASA starteten in der Nacht des 26. Jänner an der Poker Flat Research Range der Universität von Alaska. Dieses Kompositbild zeigt alle vier Starts der kleinen, mehrstufigen Raketen in Zeitraffer. Sie erforschen den faszinierenden Winterhimmel, der von Polarlichtern beleuchtet wird.

Hoch über dem Horizont kreisten Sterne um den Nordpol am Himmel. Der Standort liegt 48 Kilometer nördlich von Fairbanks in Alaska. Auch LiDAR – das sind gepulste grüne Laserstrahlen – zogen Spuren im Bild.

Die Nutzlasten, die gestartet wurden, waren vier Experimente. Zwei trugen die Bezeichnung Mesosphere-Lower Thermosphere Turbulence (M-TeX). Die anderen beiden wurden als Mesospheric Inversion-layer Stratified Turbulence (MIST) bezeichnet. Sie arbeiteten erfolgreich und erzeugten Kondensstreifen in großer Höhe, die man vom Boden aus sah.

Zur Originalseite

Beinahezusammenstoß mit M44

Rechts im Bild ist der Sternhaufen Praesepe oder Krippe im Sternbild Krebs. Er ist auch als M44 bekannt. In der Bildmitte zieht der Asteroid 2004 BL86 eine diagonale Spur.

Bildcredit und Bildrechte: Carlo Dellarole, Andrea Demarchi

Am Montag, dem 26. Jänner, erreichte der gut beobachtete Asteroid 2004 BL86 die geringste Entfernung zu unserem Planeten. Der Abstand betrug etwa 1,2 Millionen Kilometer. Das ist ungefähr die 3,1-fache Distanz zwischen Erde und Mond oder 4 Lichtsekunden.

Der Asteroid wanderte schnell über den Nachthimmel der Erde. Er hinterließ am 27. Jänner auf einer 40 Minuten belichteten Aufnahme diesen Streifen. Das Bild entstand im italienischen Piemont. Das Sichtfeld zeigt den Sternhaufen M44 im Krebs. Er ist auch als Praesepe (Krippe) bekannt.

Asteroid und M44 begegnen einander natürlich nur scheinbar. Der Haufen liegt zufällig fast in einer Sichtlinie mit dem erdnahen Asteroiden. Die tatsächliche Entfernung zwischen dem Sternhaufen und dem Asteroiden beträgt zirka 600 Lichtjahre.

Doch die Annäherung an den Planeten Erde ermöglichte detailreiche Radarbilder mit einer Antenne des Deep Space Network der NASA im kalifornischen Goldstone. Darauf ist zu erkennen, dass der Asteroid einen Mond besitzt.

Zur Originalseite

Komet Lovejoy an einem Winterhimmel

Das Bildmosaik wurde bei Palau-saverdera in Spanien fotografiert. Das riesige Panorama zeigt viele Schätze am Winterhimmel: Orion und Stier mit ihren vielen Nebeln, den Kometen C/2014 Q2 (Lovejoy) und die Milchstraße.

Bildcredit und BY-NC-2 Lizenz: Juan Carlos Casado (TWAN, Earth and Stars)

Welche Ikonen am Nachthimmel findet ihr auf diesem detailreichen Bild des nördlichen Winterhimmels? Dazu gehören die Sterne im Gürtel des Orion, der Orionnebel, der Sternhaufen der Plejaden, die hellen Sterne Beteigeuze und Rigel, der Kaliforniennebel, die Barnard-Schleife und Komet Lovejoy mit Koma und Schweif.

Orions Gürtelsterne verlaufen fast senkrecht in der Mittellinie zwischen Horizont und Bildmitte. Beim untersten Gürtelstern findet ihr den rot leuchtenden Flammennebel. Links neben dem Gürtel verläuft der rote Bogen der Barnard-Schleife, gefolgt vom hellen, orange gefärbten Stern Beteigeuze. Rechts daneben schimmert der farbige Orionnebel, gefolgt vom hellen, blauen Stern Rigel.

Oben in der Mitte ist ein blauer Haufen heller Sterne. Es sind die Plejaden. Der rote Nebel links daneben ist der Kaliforniennebel. Über der Bildmitte ist ein heller, orange gefärbter Punkt. Es ist der Stern Aldebaran. Das grüne Objekt mit dem langen Schweif rechts daneben ist Komet C/2014 Q2 (Lovejoy).

Das Bild wurde vor etwa zwei Wochen im spanischen Palau-saverdera fotografiert.

Zur Originalseite

Planck zeigt das Magnetfeld unserer Galaxis

Das dunkelbraune Band mit orange gefärbten Rändern ist das Zentralband der Galaxis. Nach oben und unten verlaufen die Farben über Gelb und Cyan zu Blau. Das ganze Bild ist von starken Schlieren durchzogen. Die Schlieren stammen vom Magnetfeld der Galaxis.

Bildcredit und Bildrechte: ESA/Planck; Danksagung: M.-A. Miville-Deschênes, CNRSIAS, U. Paris-XI

Wie sieht das Magnetfeld unserer Milchstraße aus? Schon lange ist bekannt, dass ein leichtes Magnetfeld durch unsere Milchstraße zieht. Denn es richtet offensichtlich die kleinen Staubkörnchen aus, die das Licht, das von außen kommt, streuen. Erst vor Kurzem erstellte der Satellit Planck im Erdorbit eine hoch aufgelöste Karte dieses Magnetfeldes.

Die Karte ist 30 Grad breit und farbcodiert. Sie bestätigt unter anderem, dass der interstellare Magnetismus der Galaxis in der zentralen Scheibe am stärksten ist. Das Magnetfeld entsteht durch die Rotation von geladenem Gas um das galaktische Zentrum. Man vermutet, dass das Magnetfeld der Milchstraße von oben wie eine Spirale aussieht, die von der Mitte nach außen wirbelt.

Wie die vielen Details auf dieser und ähnlichen Planck-Karten entstehen und wie Magnetismus allgemein die Entwicklung unserer Milchstraße beeinflusste, wird in den nächsten Jahren erforscht.

Zur Originalseite

Die Milchstraße über den Sieben Riesen des Urals

Auf einer schneebedeckten Kuppe ragen verschneite Felsen auf, es sind die Manpupunjor-Felsen, eines der Sieben Wunder Russlands. Am Himmel leuchtet die Milchstraße. Links unten kündigt sich die Dämmerung an.

Bildcredit und Bildrechte: Sergei Makurin

Vielleicht habt ihr schon von den Sieben Schwestern am Himmel gehört. Kennt ihr auch die Sieben Riesen auf der Erde? Die ungewöhnlichen Manpupunjor-Felsen stehen westlich vom Uralgebirge. Sie sind eines der Sieben Wunder in Russland. Wie diese urzeitlichen, 40 Meter hohen Säulen entstanden sind, ist unklar.

Der beharrliche Fotograf dieses Bildes kämpfte sich bei unwirtlichem Wetter durch unwegsames Gelände, um die schroffen Steintürme nachts im Winter zu fotografieren. Im Februar letzten Jahres hatte er endlich Erfolg. Mit Selbstauslöser beleuchtet er bei einer der schneebedeckten Säulen vorne den Boden mit einem Blitz. Hoch oben leuchten Millionen Sterne. Das Band der Milchstraße verläuft von links oben hinab.

Zur Originalseite

Eine gewundene aktive Sonnenprotuberanz

Das Video zeigt, wie eine Protuberanz ausbricht. Rechts oben ist ein Teil der Sonne zu sehen. Die Protuberanz breitet sich nach links unten aus.

Videocredit: SOHO-Arbeitsgemeinschaft, EIT, ESA, NASA

Zehn Erden passen leicht in der „Klaue“ dieses Monsters auf der Sonne. Das Monster ist eigentlich eine riesige aktive Protuberanz. Es bewegt sich auf dieser Zeitraffer-Bildfolge, die eine halbe Stunde komprimiert, aus unserer Sonne hinaus.

Dieses Video zeigt die große Protuberanz. Sie ist nicht nur wegen ihrer Größe bedeutsam, sondern auch wegen ihrer Form. Die Gestalt hat die Form einer Acht. Das lässt vermuten, dass ein komplexes Magnetfeld die ausströmenden Teilchen von der Sonne lenkt. Die differenzielle Rotation des Gases unter der Oberfläche der Sonne erklärt vielleicht die Explosion an der Oberfläche.

Der Ablauf aus fünf Bildern wurde Anfang 2000 vom Satelliten SOHO in der Sonnenumlaufbahn aufgenommen. Große Protuberanzen und energiereiche koronale Massenauswürfe (CME) sind zwar relativ selten. Doch die Sonne erreicht gerade ein Aktivitätsmaximum. Das ist eine Zeit mit vielen Sonnenflecken und hoher Sonnenaktivität im elfjährigen Sonnenfleckenzyklus. Daher treten sie derzeit viel häufiger auf.

Zur Originalseite

Licht von Cygnus A in vielen Wellenlängen

Das Bild der Galaxie Cygnus A im Sternbild Schwan kombiniert Daten in vielen Wellenlängen des elektromagnetischen Spektrums. In der Mitte ist blauer Nebel, nach links und rechts strömen rötliche Wolken aus.

Bildcredit: Röntgen: NASA/CXC/SAO; Optisch: NASA/STScI; Radio: NSF/NRAO/AUI/VLA

Die Astronomie feiert das Internationalen Jahr des Lichtes. Hier seht ihr ein Bild der aktiven Galaxie Cygnus A im ganzen elektromagnetischen Spektrum mit vielen Details.

Das Bild enthält Röntgendaten des Chandra-Observatoriums in der Umlaufbahn. Sie sind blau gefärbt. Offenbar ist Cygnus A eine gewaltige Quelle energiereicher Röntgenstrahlen. Doch bekannt ist sie eher für das energiearme Ende im elektromagnetischen Spektrum.

Cygnus A ist 600 Millionen Lichtjahre entfernt. Für Radioteleskope ist sie eine der hellsten Quellen am Himmel. Cygnus A ist die größte Radiogalaxie in unserer Nähe. Radioemissionen sind im Bild rot gefärbt. Sie breiten sich nach beiden Seiten auf einer gemeinsamen Achse fast 300.000 Lichtjahre weit aus.

Die Emissionen stammen von Strahlen relativistischer Teilchen. Diese Strahlen strömen von einem sehr massereichen Schwarzen Loch im Zentrum aus. Heiße, helle Flecken markieren die Enden der Ströme, die in das kühle, dichte Material in der Umgebung dringen.

Die Daten von Hubble zeigen die Galaxie in sichtbaren Wellenlängen. Sie sind gelb gefärbt. Das Feld im Hintergrund stammt von der Digital Sky Survey (Digitale Himmelsdurchmusterung). Es ergänzt die Ansicht in vielen Wellenlängen.

Zur Originalseite