J1502+1115: Galaxie mit drei Schwarzen Löchern

Mitten im Bild sind zwei helle Flecken abgebildet. Ihr weißes Inneres ist von roten Rändern umgeben, außen herum verläuft Grün. Der Hintergrund ist dunkelblau. Die Flecken sind zwei der drei Schwarzen Löcher in J1502+1115.

Bildcredit: R. P. Deane (U. Capetown) et al.

Die meisten Galaxien enthalten ein sehr massereiches Schwarzes Loch. Doch warum hat diese Galaxie drei? Der wahrscheinlichste Grund ist, dass die Galaxie J1502+1115 kürzlich durch eine Verschmelzung dreier kleinerer Galaxien entstand. Die zwei Schwarzen Löcher, die am engsten beisammen liegen, sind oben abgebildet. Sie wurden in Radiowellen von einer großen koordinierten Anordnung von Antennen aufgelöst. Die Radioteleskope sind über Europa, Asien und Afrika verteilt.

Diese beiden sehr massereichen Schwarzen Löcher sind etwa 500 Lichtjahre voneinander entfernt. Jedes hat wahrscheinlich an die 100 Millionen Sonnenmassen. J1502+1115 hat eine Rotverschiebung von 0,39. Derzeit ist J1502+1115 eines von nur wenigen bekannten Dreifachsystemen Schwarzer Löcher. Es wird erforscht, um mehr über die Galaxie und die Wechselwirkungen zwischen sehr massereichen Schwarzen Löchern im mittleren Alter unseres Universums zu erfahren.

Bei künftigen Beobachtungen könnten Gravitationswellen entdeckt werden, die von solchen massereichen Systemen Schwarzer Löcher ausgehen.

Zur Originalseite

Manhattanhenge: Ein Sonnenuntergang in New York City

Die Sonne geht genau am Ende einer Häuserschlucht in Manhattan unter. Vorne fahren Autos, die Straße ist von Wolkenkratzern gesäumt, der Himmel blau und klar. Ein Klick auf das Bild zeigt das unverzerrte Bild.

Bildcredit und Bildrechte: Neil deGrasse Tyson (AMNH)

Nächsten Samstag sieht man in New York bei schönem Wetter am rechten Ort, wie sich die Stadt bei Sonnenuntergang in ein modernes Stonehenge verwandelt. Die Straßen von Manhattan werden dann eindrucksvoll von Sonnenlicht geflutet, wenn die Sonne genau am westlichen Ende jeder Straße untergeht.

Normalerweise verschwindet der Sonnenuntergang hinter den riesigen Gebäuden in den gitterförmig angeordneten Straßen des größten Bezirks von New York City. Dieser Effekt macht Manhattan zu einer Art modernem Stonehenge, obwohl es etwa 30 Grad nordöstlich ausgerichtet ist. Wäre das Straßennetz von Manhattan perfekt ost-west-gerichtet, würde man den heutigen Effekt zum Frühlings– und Herbst-Äquinoktium sehen – am 21. März und 21. September. Das sind die einzigen Tage, an denen die Sonne genau in Ost-West-Richtung auf- und untergeht.

Dieses Bild wurde oben waagrecht gestreckt. Die Sonne geht von der Park Avenue aus gesehen in der 34. Straße unter. Keine Bange, wenn der Sonnenuntergang am Samstag hinter Wolken versteckt ist. Es passiert jedes Jahr Ende Mai und Mitte Juli. Wichtig ist, dass ihr dabei niemals direkt in die Sonne blickt!

Zur Originalseite

M106 im ganzen Spektrum

Aus einer Spiralgalaxie mit Staubbahnen und rötlichen Sternbildungsgebieten ragen violette Arme, die sich über die Galaxienscheibe erheben. Sie sind auf Bildern in sichtbarem Licht nicht zu sehen.

Bildcredits: Röntgen – NASA / CXC / Caltech / P.Ogle et al., Optisch – NASA/STScI, Infrarot – NASA/JPL-Caltech, Radio – NSF/NRAO/VLA

Die Spiralarme der hellen, aktiven Galaxie M106 breiten sich auf diesem Multiwellenlängen-Porträt aus. Es entstand aus Bilddaten von Radio- bis Röntgenstrahlen und zeigt die Galaxie im ganzen elektromagnetischen Spektrum. M106 ist auch als NGC 4258 bekannt. Sie befindet sich im nördlichen Sternbild Jagdhunde. Die gut vermessene Entfernung zu M106 beträgt 23,5 Millionen Lichtjahre. Damit ist diese kosmische Szenerie etwa 60.000 Lichtjahre breit.

Typisch für große Spiralgalaxien sind dunkle Staubbahnen, junge Sternhaufen und Sternbildungsgebiete. Sie säumen die Spiralarme, die in einem hellen Kern zusammenlaufen.

Doch dieses Komposit betont zwei anomale Arme in Radiowellenlängen (violett) und Röntgenlicht (blau). Sie erheben sich anscheinend aus der Zentralregion von M106. Es sind Hinweise auf energiereiche Strahlströme aus Materie, die in die Galaxienscheibe rasen. Die Strahlen werden wahrscheinlich von Materie gespeist, die in ein massereiches zentrales Schwarzes Loch fällt.

Zur Originalseite

OCO-2-Nachtstart

Eine startende Rakete malt einen hellen Bogen an den Nachthimmel. Im Hintergrund ziehen die Sterne Strichspuren am Himmel.

Bildcredit und Bildrechte: Rick Baldridge

Dieses faszinierende Bild wurde lang belichtet. Am Nachthimmel wölben sich Sternenbögen über der nebeligen Monterey Bay und den Lichtern von Santa Cruz in Kalifornien in den Vereinigten Staaten. Die Belichtung begann am 2. Juli etwa um 2:56 PDT. Daher nahm sie auch die Bahn einer Delta-II-Rakete auf, welche die Raumsonde OCO-2 der NASA in die Umlaufbahn brachte.

Die Leuchtspur ist hier von einem Aussichtspunkt 320 Kilometer nördlich der Startrampe am Militärflugplatz Vandenberg zu sehen. Die ersten fünf Minuten des Raketenflugs zeigt die Flugbahn Richtung Südwesten über den Pazifik, um A-Train in eine polare Umlaufbahn um den Planeten Erde zu bringen. Die ganze Spur ist bis zum Abschalten der Haupttriebwerke aufgezeichnet. Am Ende ist ein sehr zarter Bausch. Er markiert den Abwurf der Nutzlastverkleidung.

Die beiden hellsten Strichspuren unter der Raketenspur sind der Alpha- und der Beta-Stern im Sternbild Kranich. Es fliegt hoch am südlichen Himmel. Das Missionsziel von OCO-2 ist eine Untersuchung zum Kohlendioxid in der Atmosphäre. Vom Weltraum aus wird beobachtet, wie der Planet Erde atmet.

Zur Originalseite

An der Cygnus-Wand

In der Mitte leuchtet ein blauer flächiger Nebel, der links unten von dunklen Wolken verdeckt wird. Rechts und oben ist eine orange-braun-farbene Wolke mit einem klar abgegrenzten Wall am Rand.

Bildcredit und Bildrechte: Martin Pugh

Ein markanter Emissionsgrat liegt rechts in der Himmelslandschaft. Er ist als Cygnus-Wand bekannt. Der Grat gehört zu einem größeren Emissionsnebel mit einer charakteristischen Form. Er heißt landläufig Nordamerikanebel. Die etwa 10 Lichtjahre lange Außenlinie des Nebels erinnert an die Westküste von Mexiko.

Die kosmische Nahaufnahme entstand aus Schmalband-Bilddaten. Sie kartiert die Emissionen von Schwefel-, Wasserstoff- und Sauerstoffatomen in roten, grünen und blauen Farben. Das Ergebnis betont die helle Ionisierungsfront. Unten zeichnen sich feine, dunkle, staubige Formen als Silhouetten ab.

Die dunklen Gestalten wurden von der energiereichen Strahlung der jungen, heißen, massereichen Sterne in der Region geformt. Diese Sterne sind im Bild verteilt. Die dunklen Wolken bestehen aus kühlem Gas und Staub. In ihrem Inneren entstehen wahrscheinlich Sterne.

Der Nordamerikanebel ist als NGC 7000 katalogisiert. Seine Entfernung beträgt etwa 1500 Lichtjahre. Man findet ihn nordöstlich vom hellen Stern Deneb im hoch fliegenden Sternbild Schwan.

Zur Originalseite

NGC 4651: Die Schirmgalaxie

Die Spiralgalaxie in der Mitte wirkt relativ normal, doch links ragt ein blasser blauer Sternstrom aus der Scheibe, der an einen Schirm erinnert. Links ist ein Bildeinschub, er zeigt den Kern der kleinen Galaxie, aus der der Gezeitenstrom entstand.

Bildcredit und Bildrechte: R Jay Gabany (Blackbird Observatories) Zusammenarbeit: C.Foster (Australian Astronomical Obs.), H.Lux (U. Nottingham, Oxford), A.Romanowsky (San Jose State, UCO), D.Martínez-Delgado (Heidelberg) et al.

Die Spiralgalaxie NGC 4651 ist etwa 62 Millionen Lichtjahre entfernt. Sie liegt im gut gekämmten nördlichen Sternbild Haar der Berenike (Coma Berenices). Diese Universumsinsel ist etwa halb so groß wie unserer Milchstraße. Links ragt eine klar erkennbare, blasse, schirmförmige Struktur über die helle Galaxienscheibe hinaus. Sie ist ungefähr 100.000 Lichtjahre lang und erinnert an einen Schirm.

Inzwischen weiß man, dass der gewaltige kosmische Schirm ein Gezeitensternenstrom ist. Das sind weit ausladende Sternströme. Sie werden durch Gravitation aus einer kleineren Begleitgalaxie gerissen. Die kleine Galaxie wurde bei wiederholten Begegnungen am Ende zerrissen. Davor wanderte sie auf exzentrischen Umlaufbahnen durch NGC 4651 vor und zurück.

Das eingefügte Bild vergrößert den übrig gebliebenen Kern der kleineren Galaxie. Er wurde bei einer groß angelegten Erforschung des Systems entdeckt. Für diese Aufgabe wurden Daten der großen Teleskope Subaru und Keck auf dem Mauna Kea verwendet. Dabei arbeiteten Amateur- und Berufsastronom*innen zusammen.

Das Ziel war, die blassen Strukturen um helle Galaxien abzubilden. Diese blassen Formen zeigen, dass sogar bei nahen Galaxien häufig Gezeitensternströme von galaktischen Verschmelzungen auftreten. Das Ergebnis wird mit Modellen der Galaxienentstehung erklärt. Diese Modelle gelten auch für unsere Milchstraße.

Zur Originalseite

Wolf-Rayet-Stern 124: Sternwindmaschine

Um den Wolf-Rayet-Stern WR 124 leuchtet ein stark strukturierter orangefarbener Nebel.

Bildcredit: Hubble-Vermächtnisarchiv, NASA, ESABearbeitung und Lizenz: Judy Schmidt

Manche Sterne explodieren in Zeitlupe. Seltene, massereiche Wolf-Rayet-Sterne sind stürmisch und heiß. Sie lösen sich quasi vor unseren Teleskopen langsam auf. Gewaltige Sternwinde stoßen leuchtende Gaskugeln aus. Jede davon hat üblicherweise mehr als die 30-fache Masse der Erde.

Der Wolf-Rayet-Stern WR 124 leuchtet in der Mitte. Er bildet den sechs Lichtjahre großen Nebel, der ihn umgibt. Er ist als M1-67 bekannt. Die Gründe, warum dieser Stern in den letzten 20.000 Jahre langsam sich selbst sprengt, werden weiterhin erforscht.

WR 124 ist 15.000 Lichtjahre von uns entfernt im Sternbild Pfeil. Das Schicksal jedes Wolf-Rayet-Sterns hängt wahrscheinlich von seiner Masse ab. Doch viele beenden ihre Existenz vermutlich mit spektakulären Explosionen wie Supernovae oder Gammablitzen.

Zur Originalseite