Anaglyphe der VIP-Site von Apollo 17

Das graue Bild hat rote und cyanfarbene Ränder. Es ist ein Anaglyphenbild und wirkt dreidimensional, wenn man es mit rot-blauen Brillen betrachtet. Vorne steht ein großer Mondrover, hinten sind Mondberge und das Mondlandemodul der Mission Apollo 17.

Bildcredit: Gene Cernan, Apollo 17, NASA; Anaglyphe von Erik van Meijgaarden

Nehmt eure rot-blauen Brillen und schaut diese Stereoansicht vom Taurus-Littrow-Tal auf dem Mond an! Die Anaglyphe zeigt vorne eine detailreiche 3D-Ansicht des Mondrovers von Apollo 17. Hinten steht die Mondlandefähre vor weit entfernte Mondhügeln. Über die Fernsehkamera des Rovers konnte die Welt den Start der Aufstiegsstufe des Mondmoduls beobachten. Daher wurde dieser Parkplatz gewählt. Er wurde VIP-Ort benannt.

Im Dezember 1972 verbrachten die Apollo-17-Astronauten Eugene Cernan und Harrison Schmitt etwa 75 Stunden auf dem Mond. Ihr Kollege Ronald Evans kreiste währenddessen oben. Die Besatzung kehrte mit 110 Kilogramm Gesteins- und Bodenproben zurück. Das war mehr, als bei jeder anderen Mondlandestelle gesammelt wurde. Cernan und Schmitt sind immer noch die Letzten, die auf dem Mond wanderten (oder fuhren).

Zur Originalseite

Die Polarring-Galaxie NGC 2685

Mitten im Bild ist die Scheibengalaxie NGC 2685 oderArp 336, die von einem Ring aus Sternen, Sternhaufen und Staub umkreist wird. Dieser Ring macht sie zu einer Polarringgalaxie.

Bildcredit und Bildrechte: Ken Crawford

NGC 2685 ist eine bestätigte Polarring-Galaxie. Polarringgalaxien sind eine seltene Art Galaxien. Sie werden von Sternen, Gas und Staub in ringförmigen Strukturen umkreist. Diese Ringe stehen senkrecht zur Ebene der flachen Galaxienscheibe. Die bizarre Anordnung entstand vielleicht aus Materie einer anderen Galaxie, die zufällig von einer Scheibengalaxie eingefangen wurde. Dabei wurden die eingefangenen Trümmer zu einem rotierenden Ring auseinandergezogen.

Doch die beobachteten Eigenschaften von NGC 2685 lassen vermuten, dass die rotierende Ringstruktur bemerkenswert alt und stabil ist. Die scharfe Ansicht zeigt das merkwürdige System. Es ist auch als Arp 336 oder Helix-Galaxie bekannt. Die seltsamen lotrechten Ringe sind leicht zu erkennen. Sie laufen nämlich zusammen mit anderen äußeren Störstrukturen vor der galaktischen Scheibe vorbei.

NGC 2685 ist etwa 50.000 Lichtjahre groß. Sie befindet sich 40 Millionen Lichtjahre entfernt im Sternbild Große Bärin (Ursa Major).

Zur Originalseite

Messier 63: Die Sonnenblumengalaxie

In der Mitte schwebt eine Spiralgalaxie mit sehr stark strukturierte Spiralarme und Sternbildungsregionen. In der Mitte leuchtet die Galaxie gelblich, außen herum ist sie bläulich, umgeben von einem zarten Nebel und schwarzen Raum und wenigen Sternen.

Bildcredit und Bildrechte: Bill Snyder (Sierra Remote Observatories)

Messier 63 ist eine helle Spiralgalaxie am Nordhimmel. Sie ist etwa 25 Millionen Lichtjahre entfernt und steht im treuen Sternbild Jagdhunde. Das majestätische Inseluniversum ist auch als NGC 5055 katalogisiert. Es ist fast 100.000 Lichtjahre groß. Damit ist sie ähnlich groß wie unsere Milchstraße.

M63 hat den landläufigen Namen „Sonnenblumengalaxie“. Auf diesem scharfen, farbenprächtigen Galaxienporträt präsentiert sie einen hellen, gelblichen Kern. Ihre weiten, blauen Spiralarme sind von Strähnen aus kosmischem Staub durchzogen. Rötliche Gebiete, in denen Sterne entstehen, sprenkeln die Spiralarme.

M63 ist ein markantes Mitglied einer bekannten Galaxiengruppe. Sie hat blasse, lang gezogene Strukturen. Sie sind vielleicht durch Gravitations-Wechselwirkung mit nahen Galaxien entstanden. M63 leuchtet nämlich im ganzen elektromagnetischen Spektrum. Vermutlich fand intensive Sternbildung statt.

Zur Originalseite

Die Sonne rotiert


Videocredit: SDO, NASA; Digitale Anordnung: Kevin Gill (Apoapsys)

Verändert sich die Sonne, während sie rotiert? Ja. Manche Änderungen sind subtil, andere dramatisch. Das Solar Dynamics Observatory (SDO) der NASA bildete unsere Sonne ab. Die Zeitrafferabläufe zeigen ihre Rotation im Jänner.

Auf dem großen Bild links ist die Chromosphäre der Sonne im Ultraviolettlicht abgebildet. Das kleinere, hellere Bild oben in der Mitte zeigt zeitgleich die vertrautere Photosphäre der Sonne in sichtbarem Licht. Die anderen kleinen Sonnenbilder stammen von Röntgenemissionen relativ seltener Eisenatome. Sie treten in unterschiedlicher Höhe der Korona auf. Alle sind in Falschfarben dargestellt, um die Unterschiede zu betonen.

Die Sonne braucht etwas weniger als einen Monat für eine ganze Rotation. Am schnellsten rotiert der Äquator. Kurz nach Beginn des Videos kommt eine große aktive Sonnenfleckenregion in Sicht. Zarte Effekte sind Veränderungen der Oberflächentextur und die Form der aktiven Regionen. Dramatischen Ereignisse sind zahlreiche Blitze in aktiven Regionen und flatternde oder ausbrechende Protuberanzen am ganzen Sonnenrand.

Dieses Jahr nähert sich unsere Sonne ihrer maximalen Sonnenaktivität. Die Aktivität folgt einem magnetischen 11-Jahres-Zyklus. Am Ende des Videos rotiert dieselbe große aktive Sonnenfleckenregion ins Bild zurück, die anfangs erwähnt wurde. Sie sieht nun anders aus.

Zur Originalseite

Das Zentrum des Rosettennebels

In der Mitte befindet sich ein Sternhaufen in der Höhlung eines bl#ulichen Nebels, davor sind einige Fasern vo Dunkelnebeln.

Bildcredit und Bildrechte: Don Goldman

Mitten im Rosettennebel strahlt ein heller offener Sternhaufen. Er beleuchtet den Nebel. Die Sterne von NGC 2244 sind vor wenigen Millionen Jahren aus dem umgebenden Gas entstanden. Das Bild wurde im Jänner aus mehreren Aufnahmen in den Spektralfarben von Schwefel (rot), Wasserstoff (grün) und Sauerstoff (blau) erstellt. Es zeigt unglaubliche Details der Zentralregion.

Ein heißer Teilchenwind strömt von den Haufensternen aus. Er trägt zu einer sehr komplexen Menagerie aus Gas- und Staubfasern bei. Dabei höhlt er langsam die Mitte Haufens aus. Das Zentrum des Rosettennebels hat einen Durchmesser von etwa 50 Lichtjahren. Es ist ungefähr 4500 Lichtjahre entfernt. Man sieht es mit Fernglas im Sternbild Einhorn (Monoceros).

Zur Originalseite

Dunkle Materie im Zentrum der Galaxis?

Das linke der beiden Bilder ist ein Rohbild vom galaktischen Zentrum. Rechts wurden Gammaquellen abgezogen. Dabei blieb ein Überschuss. In den Bildmitten sind bunte Kerne, die von lila und blauen Nebeln umgeben sind.

Bildcredit: T. Daylan et al., Weltraumteleskop Fermi, NASA

Wie entstehen Gammastrahlen im Zentrum der Milchstraße? Die Spannung steigt. Eine Erklärung könnte lauten: durch schwer fassbare Dunkle Materie. In den letzten Jahren kartierte das Gammastrahlen-Weltraumteleskop Fermi das Zentrum der Galaxis in Gammastrahlen. Wiederholte detailreiche Analysen zeigen: Der Bereich um das galaktische Zentrum wirkt zu hell, als dass man es mit bekannten Gammastrahlen-Quellen erklären könnte.

Das Rohbild links oben zeigt die galaktische Zentralregion in Gammastrahlen. Im rechten Bild wurden alle bekannten Quellen abgezogen. Dabei blieb ein unerwarteter Überschuss. Ein faszinierendes hypothetisches Modell könnte das Ausmaß erklären. Es enthält eine Art Dunkler Materie, die als WIMPs bekannt sind. Es sind Teilchen, die mit sich selbst kollidieren und dabei die Gammastrahlen erzeugen könnten, die beobachtet wurden.

Diese Hypothese ist allerdings umstritten. Es gibt Diskussionen und detailreichere Untersuchungen. Die Natur Dunkler Materie zu erkennen ist eine der großen Aufgaben moderner Wissenschaft. Denn diese ungewöhnliche Art kosmologisch allgegenwärtiger Materie macht sich nur durch Gravitation bemerkbar.

Astrophysik: 750+ Codes in der Astrophysik-Quellcode-Bibliothek

Zur Originalseite

Ein Loch im Mars

In einer hellgrauen, schwach gewellten glatten Oberfläche ist ein Krater, auf dessen Boden ein Loch in eine Höhle führt.

Bildcredit: NASA, JPL, U. Arizona

Wie entstand dieses ungewöhnliche Loch auf dem Mars? Das Loch wurde 2011 zufällig auf Bildern der staubigen Hänge des Vulkans Pavonis Mons auf dem Mars entdeckt. Sie wurden mit dem Instrument HiRISE an Bord des robotischen Mars Reconnaissance Orbiter in der Mars-Umlaufbahn fotografiert. Das Loch ist anscheinend eine Öffnung in eine Höhle unter der Oberfläche. Sie ist rechts teilweise beleuchtet.

Das Bild und spätere Aufnahmen wurden untersucht. Dabei zeige sich, dass die Öffnung etwa 35 Meter groß ist. Der Schattenwinkel im Inneren lässt auf eine Tiefe der darunterliegenden Höhle von etwa 20 Metern schließen. Warum dieses Loch in einem kreisrunden Krater liegt, und wie groß die darunter liegenden Höhle ist, kann man nur vermuten.

Solche Löcher sind sehr interessant, weil die Höhlen relativ gut vor der unwirtlichen Marsoberfläche geschützt sind. Damit sind sie mögliche Kandidaten für Leben auf dem Mars. Die Gruben sind daher Hauptziele für künftige Raumsonden oder robotische und sogar menschliche interplanetare Forschende.

Zur Originalseite

Mount Sharp am Horizon

Das Bild ist rot-cyanfarben. Wenn man es mit Brillen in diesen Farben betrachtet, wirkt es dreidimensional. Es zeigt geologische Schichten im Vordergrund. Hinten ragt Mount Sharp (Aeolis Mons) auf.

Bildcredit: NASA, JPL-Caltech, MSL, Navcam

Nehmt eure rot-blauen Brillen (rot für das linke Auge) und seht diese weite Marslandschaft an. Das Stereo-Panorama entstand aus Bildern der Navcam des Rovers Curiosity. Sie wurden bei einer Rast während einer 100 Meter weiten Fahrt an Sol 548 (am 19. Februar) fotografiert.

Der Gipfel des Mount Sharp ist am Horizont sichtbar. Er ist 5,5 Kilometer hoch und auch als Aeolis Mons bekannt. Dort liegt Curiositys Basisstation. Vorne verlaufen Reihen aus Schichtgestein am Junda-Aufschluss. Der Blick reicht nach Süd-Südost. Er ist 160 Grad breit. (Hier ist ein weiteres Navcam-Bild. Es blickt auf Curiositys Route am Ende der Fahrt dieses Sols zurück.)

Zur Originalseite