Phobos über Mars

Über einen unbestimmten Hintergrund mit Kratern am unteren Bildende schwebt ein kleiner, grauer, kartoffelförmiger Himmelskörper.

Bildcredit: ESA, DLR, FU Berlin, Mars Express; Bearbeitung und CC BY 2.0 Lizenz: Andrea Luck

Warum ist Phobos so dunkel? Phobos, der größere und innere der beiden Marsmonde, ist der dunkelste Mond im ganzen Sonnensystem. Seine ungewöhnliche Bahn und Farbe lassen vermuten, dass er ein eingefangener Asteroid ist, der aus einer Mischung von Eis und dunklem Gestein besteht.

Dieses Bild zeigt Phobos in zugewiesenen Farben am Marsrand. Es entstand Ende 2021 mit der robotischen ESA-Raumsonde Mars Express, die derzeit den Mars umkreist. Der karge Mond Phobos ist von vielen Kratern bedeckt. Sein größter Krater liegt hier auf der Rückseite. Bilder wie dieses lassen vermuten, dass Phobos von etwa einem Meter losem Staub bedeckt ist.

Phobos kreist so nahe um Mars, dass er an manchen Orten zweimal am Tag auf- und untergeht, und an anderen Orten ist er überhaupt nicht zu sehen. Phobos‚ Bahn um Mars sinkt ständig ab. Wahrscheinlich zerbricht er in etwa 50 Millionen Jahren, sodass und die Stücke auf die Marsoberfläche stürzen.

Astronomie erleben bei den Burggesprächen von 11.-13. August: Schnell noch anmelden!

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (Ab 1995, deutsch ab 2007)
Zur Originalseite

Spiralförmiges Polarlicht über Islands Verwerfung

Über einer duklen, düsteren Landschaft mit wilden Wolken wölbt sich ein grünes Polarlicht in Form einer Spirale.

Bildcredit und Bildrechte: Juan Carlos Casado (Starry Earth, TWAN)

Schätzt das Schöne, aber fürchtet das Untier. Schön ist das Polarlicht über uns in Form einer großen grünen Spirale zwischen malerischen Wolken. An seiner Seite leuchten der helle Mond und die Sterne im Hintergrund. Das Untier ist eine Woge geladener Teilchen, die das Polarlicht hervorrufen. Eines Tages könnten solche Teilchen der Zivilisation schaden.

Im Jahr 1859 waren auf der ganzen Welt beachtliche Polarlichter zu sehen. Dann traf ein Puls geladener Teilchen von einem koronalen Massenauswurf (KMA) nach einer Sonneneruption so heftig auf die Magnetosphäre der Erde, dass er das Carrington-Ereignis auslöste. Dieser Angriff der Sonne komprimierte das Erdmagnetfeld so gewaltsam, dass es starke Ströme und Funken an Telegrafendrähten induzierte. Das erschreckte viele Telegrafisten. Wenn ein Ereignis der Carrington-Klasse heute die Erde trifft, würde es möglicherweise Schäden an den weltweiten Stromnetzen und der Elektronik in einem nie da gewesenen Ausmaß verursachen.

Dieses Polarlicht wurde 2016 über dem Þingvallavatn auf Island fotografiert. Dieser See füllt teilweise eine Verwerfung, welche die großen tektonischen Kontinentalplatten Eurasien und Nordamerika voneinander trennt.

Fast Hyperraum: APOD-Zufallsgenerator
Zur Originalseite

Apollo 11: Etwas Sonne tanken

Das Bild von der Mondoberfläche zeigt links das Mondlandemodul, in der Mitte stellt der Astronaut Buzz Aldrin ein Sonnenwind-Experiment auf. Der Himmel ist schwarz, der Boden von dunklem grauem Staub bedeckt.

Bildcredit: Apollo 11, NASA (Bildscan von Kipp Teague)

Helles, gleißendes Sonnenlicht und lange dunkle Schatten prägen dieses Bild der Mondoberfläche. Es wurde am 20. Juli 1969 vor vierundfünfzig Jahren, fotografierte es der Apollo-11-Astronaut Neil Armstrong, der erste Mensch, der die Mondoberfläche betrat.

Hier seht ihr das Mondmodul der Mission, den Adler, und Buzz Aldrin, den Piloten des Mondmoduls im Raumanzug. Aldrin entrollt ein langes Stück Folie, das Experiment für die Zusammensetzung des Sonnenwindes. Nachdem die freigelegte Folie zur Sonne gerichtet wurde, fing sie Teilchen ein, die mit dem Sonnenwind ausströmten. Sie sammelte also eine Materialprobe direkt von der Sonne. Der Sonnenwindkollektor wurde zusammen mit Mondgestein und Mondbodenproben für Analysen in irdischen Laboren zurückgebracht.

Astronomie erleben auf einem mittelalterlichen Schloss: Noch ein paar Plätze sind frei!

Zur Originalseite

Junge Sterne, stellare Strahlen

Mitten im sternbedeckten Bild leuchtet ein rötlicher Nebel, rechts darunter leuchten helle Sterne mit je 6 Zacken, einige weitere Sterne im Bild haben ebenfalls 6 Zacken.

Bildcredit und Bildrechte: NASA, ESA, CSA, Bearbeitung: Joseph DePasquale (STScI)

Molekulares Gas, das mit hoher Geschwindigkeit von einem Paar aktiver junger Sterne ausströmt, leuchten im Infrarotlicht. Sie sind auf diesem Bild, das mit der NIRcam des Weltraumteleskops James Webb aufgenommen wurde, dargestellt.

Die jungen Sterne sind als HH (Herbig-Haro) 46/47 katalogisiert. Sie befinden sich in einem dunklen Nebel, der in sichtbarem Licht großteils undurchsichtig ist. Das Sternenpaar ist auf dem NIRcam-Bild in der Mitte der markanten rötlichen Beugungsspitzen. Ihre energiereichen Sternströme sind fast ein Lichtjahr lang und wühlen sich in das dunkle interstellare Material.

Dieses junge Sternsystem ist nur etwa 1140 Lichtjahre entfernt, also relativ nahe und liegt im nautischen Sternbild Schiffssegel. Es eignet sich bestens für die Erforschung mit Webbs Infrarotausrüstung.

Zur Originalseite

Galaxien im Fluss

Von einer seitlich sichtbaren Spiralgalaxie steigt ein Arm aus Sternen auf, darüber schwebt eine kleine, senkrechte Galaxie. Im Bild sind weitere Galaxien und Sterne zu sehen.

Bildcredit und Lizenz: CTIO/NOIRLab/DOE/NSF/AURA; R. Colombari, M. Zamani und D. de Martin (NSF’s NOIRLab)

Große Galaxien wachsen, indem sie kleine Galaxien verschlingen. Sogar unsere Galaxis betreibt eine Art galaktischen Kannibalismus, indem sie kleine Galaxien verschlingt, die ihr zu nahe kommen und von der Schwerkraft der Milchstraße eingefangen werden. Das ist eine gängige Praxis im Universum. Dieses markante Paar wechselwirkender Galaxien am Ufer des südlichen Sternbildes Eridanus, dem Fluss, ist ein gutes Beispiel dafür.

Die große, verzerrte Spirale NGC 1532 ist mehr als 50 Millionen Lichtjahre entfernt und trägt offenbar einen Gravitationskampf mit der Zwerggalaxie NGC 1531 aus. Diesen Kampf wird die kleinere Galaxie wohl verlieren. Die Spirale NGC 1532 ist fast von der Kante zu sehen. Sie hat einen Durchmesser von ungefähr 100.000 Lichtjahren.

Dieses scharfe Bild zeigt die verschmelzenden Galaxien. Es wurde von der Dunkle-Energie-Kamera fotografiert, die am Blanco-Teleskop mit 4 Metern Durchmesser der Nationalen Wissenschaftsstiftung montiert ist. Das Teleskop befindet sich am Cerro Tololo Interamerikanischen Observatorium in Chile. Das Paar NGC 1532 und NGC 1531 ist vermutlich ähnlich aufgebaut wie das gut untersuchte System M51, das aus einer von oben sichtbaren Spirale mit kleiner Begleiterin besteht.

Zur Originalseite

Der Garnelennebel IC 4628

IC 4628 im Bild wird auch als Garnelennebel oder Gum 56 bezeichnet. Der Sternenhintergrund ist von orange und blau leuchtenden Nebelschwaden überzogen.

Bildcredit und Bildrechte: Daniel Stern

Südlich von Antares, im Schwanz des nebelreichen Sternbildes Skorpion, liegt der Emissionsnebel IC 4628. Heiße, massereiche Sterne in der Nähe, die nur einige Millionen Jahre alt sind, beleuchten den Nebel mit unsichtbarem Ultraviolettlicht. Dadurch werden Elektronen von den Atomen abgestreift. Wenn sich die Elektronen wieder mit den Atomen verbinden, entsteht das sichtbare Leuchten des Nebels, in dem das rote Leuchten von Wasserstoff überwiegt.

Die gezeigte Region ist etwa 6000 Lichtjahre entfernt und 250 Lichtjahre groß. Am Himmel ist sie mehr als drei Vollmonde breit. Der Nebel ist nach dem australischen Astronomen Colin Stanley Gum auch als Gum 56 katalogisiert. Wenn ihr Meeresfrüchte und die Tiefen des Himmels liebt, kennt ihr diese kosmische Wolke vielleicht als Garnelennebel.

Das hübsche Farbbild ist eine neue astronomische Komposition aus Aufnahmen, die im April in mehreren Nächten im chilenischen Rio Hurtado entstanden sind.

Zur Originalseite

Der Adlernebel mit heißen Röntgensternen

Säulen aus Gas und dunklem Staub verlaufen diagonal von links unten nach rechts oben. Leuchtstarke Röntgenquellen sind als helle Punkte um das Bild herum eingeblendet. Infraroter Staub leuchtet hinter den Säulen.

Bildcredit: Röntgen: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; Infrarot: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Sichtbares Licht: Hubble: NASA/ESA/STScI, ESO; Bildbearbeitung: L. Frattare, J. Major, N. Wolk und K. Arcand

Wie sehen die berühmten Sternsäulen im Adlernebel in Röntgenlicht aus? Um das herauszufinden, spähte das NASA-Röntgenobservatorium Chandra im Orbit in und durch diese interstellaren Berge der Sternbildung. Es zeigte sich, dass die Staubsäulen selbst nicht viel Röntgenlicht abstrahlt, doch es kamen viele kleine, aber helle Röntgenquellen zum Vorschein. Sie sind als helle, rötliche Punkte abgebildet.

Das Bild ist ein Komposit aus Aufnahmen von Chandra (Röntgen), XMM (Röntgen), JWST (Infrarot), Spitzer (Infrarot), Hubble (visuell) und dem VLT (visuell). Welche Sterne diese Röntgenstrahlen erzeugen, wird weiterhin erforscht, doch einige sind vermutlich heiße, kürzlich entstandene Sterne mit geringer Masse, andere dagegen heiße, ältere Sterne mit großer Masse.

Die heißen Röntgensterne sind im Bild verteilt. Schon früher wurden sie als verdampfende gasförmige Globulen (EGGS) erkannt. In sichtbarem Licht sind sie unsichtbar, und derzeit sind sie auch nicht heiß genug, um Röntgenlicht abzustrahlen.

Zur Originalseite

Chemische Stoffe leuchten, wenn ein Meteor zerfällt

Vor einem dunklen Hintergrund verläuft ein bunt leuchtende Spur, die an manchen Stellen ausgefranst ist.

Bildcredit und Bildrechte: Michael Kleinburger

Meteore können farbenprächtig sein. Menschliche Augen erkennen diese Farben nur selten, doch Kameras können das oft. Hier seht ihr eine Feuerkugel, das ist ein zerfallender Meteor. Sie war nicht nur eine der hellsten, die der Fotograf je gesehen hat, sondern auch bunt.

Der Meteor wurde zufällig Mitte Juli mit einer Kamera eingefangen, die auf dem Hochkar in Österreich positioniert war, um das zentrale Band der Milchstraße zu fotografieren. Der leuchtende Kieselstein wurde wahrscheinlich vor langer Zeit von einem Asteroiden oder einem Kometen abgeworfen und hatte das Pech, in die Erdatmosphäre einzutreten.

Farben in Meteoren stammen für gewöhnlich von ionisierten chemischen Elementen. Sie werden freigesetzt, wenn der Meteor zerfällt. Blaugrün stammt typischerweise von Magnesium, Kalzium strahlt violett und Nickel leuchtet grün. Rot stammt jedoch meist von angeregtem Stickstoff und Sauerstoff in der Erdatmosphäre.

Diese helle MeteorFeuerkugel löste sich in weniger als einer Sekunde mit einem Blitz auf, aber sie hinterließ eine vom Wind verwehte Ionisationsspur, die fast eine Minute lang sichtbar blieb.

Zur Originalseite